首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   3篇
  20篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2011年   3篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有20条查询结果,搜索用时 0 毫秒
1.
Stephanopogon is a taxon of multiciliated protists that is now known to belong to Heterolobosea. Small subunit ribosomal DNA (SSU rDNA) phylogenies indicate that Stephanopogon is closely related to or descended from Percolomonas, a small tetraflagellate with a different feeding structure, thus these morphologically dissimilar taxa are of ongoing evolutionary interest. A new strain of Stephanopogon, KM041, was cultured, then characterized by light microscopy, electron microscopy, and SSU rDNA sequencing. KM041 is 18–35 μm (mean 26.8 μm) long, with six main ventral ciliary rows, one ventro‐lateral ciliary row, and three anterior barbs. It closely resembles Stephanopogon minuta Lei et al. 1999 in morphology, and is very closely related to an extinct culture “S. aff. minuta”, yet is markedly dissimilar in SSU rDNA sequence from a different isolate identified as S. minuta. This confirms that there are at least two distinct lineages of S. minuta‐like cells, and we describe KM041 as a new species, Stephanopogon pattersoni n. sp. The ultrastructure of KM041 resembles that of previously studied Stephanopogon species, though it has a novel paraxonemal structure in a few cilia. We note that a sub‐basal‐body pad and bulbous axosome are unlikely to be apomorphies for the StephanopogonPercolomonas clade.  相似文献   
2.
An amoeba strain was isolated from marine sediment taken from the beach near a fumarole in Italy. The trophozoites of this new marine species transforms into flagellates with variable numbers of flagella, from 2 to 10. The strain forms round to oval cysts. This thermophilic amoeboflagellate grows at temperatures up to 54 °C. Molecular phylogenetic analysis of the small subunit ribosomal DNA (SSU rDNA) places the amoeboflagellate in the Heterolobosea. The closest relatives are Stachyamoeba sp. ATCC50324, a strain isolated from an ocean sample, and Vrihiamoeba italica, a recent isolate from a rice field. Like some other heterolobosean species, this new isolate has a group I intron in the SSU rDNA. Because of the unique place in the molecular phylogenetic tree, and because there is no species found in the literature with similar morphological and physiological characteristics, this isolate is considered to be a new genus and a new species, Oramoeba fumarolia gen. nov., sp. nov.  相似文献   
3.
Percolomonas cosmopolitus is a common free-living flagellate of uncertain phylogenetic position that was placed within the Heterolobosea on the basis of ultrastructure studies. To test the relationship between Percolomonas and Heterolobosea, we analysed the primary structure of the actin and small-subunit ribosomal RNA (SSU rRNA) genes of P. cosmopolitus as well as the predicted secondary structure of the SSU rRNA. Percolomonas shares common secondary structure patterns of the SSU rRNA with heterolobosean taxa, which, together with the results of actin gene analysis, confirms that it is closely related to Heterolobosea. Phylogenetic reconstructions based on the sequences of the SSU rRNA gene suggest Percolomonas belongs to the family Vahlkampfiidae. The first Bayesian analysis of a large taxon sampling of heterolobosean SSU rRNA genes clarifies the phylogenetic relationships within this group.  相似文献   
4.
Two new species of heterolobosean amoebae from anoxic environments, Monopylocystis visvesvarai and Sawyeria marylandensis, are described on the basis of light microscopy, electron microscopy, and their phylogenetic affiliation based on analyses of nuclear small-subunit ribosomal RNA gene sequences. Both species lack mitochondria but have organelles provisionally interpreted as hydrogenosomes, and neither can tolerate aerobic conditions. As their conditions of culture do not exclude all oxygen, they may be microaerophiles rather than strict anaerobes. Both species have unusual nucleolar morphologies. Monopylocystis visvesvarai, from a marine sediment, has nucleolar material distributed around the nuclear periphery. It is the first non-aerobic heterolobosean protist for which a cyst is known; the cyst is unmineralized and unornamented except for a single, raised, plugged pore. Sawyeria marylandensis, from an iron-rich freshwater stream, has nucleolar material distributed in one or two parietal masses, which persist during mitosis. In phylogenetic analyses of small-subunit rRNA gene sequences, Monopylocystis visvesvarai, Sawyeria marylandensis and Psalteriomonas lanterna converge to form a single clade of non-aerobic (anaerobic/microaerophilic) heteroloboseans.  相似文献   
5.
ABSTRACT. The enigmatic marine protozoan Stephanopogon was first classified with ciliate protozoa because its pellicle also has rows of cilia. As ciliates have nuclear dimorphism with separate germline and somatic nuclei, Stephanopogon with several identical nuclei was regarded as a model for a hypothetical homokaryotic ancestor of ciliates. When electron microscopy revealed radical differences from ciliates this idea was abandoned, but its evolutionary position remains controversial, affinities with three other phyla being suggested. We sequenced 18S rDNA from Stephanopogon aff. minuta and actin genes from it and Stephanopogon apogon to clarify their evolutionary position. Phylogenetic analyses of 18S rRNA nest S. aff. minuta and Stephanopogon minuta securely within the protozoan phylum Percolozoa with zooflagellates of the genus Percolomonas, their closest relatives, comprising the clade Percolatea. This supports a previous grouping of Stephanopogon (order Pseudociliatida) with Percolomonas (order Percolomonadida) as a purely zooflagellate class Percolatea within Percolozoa, in contrast to the fundamentally amoeboid Heterolobosea, which are probably ancestral to Percolatea. Stephanopogon actins evolve exceptionally fast: actin trees place them as a long branch within bikont eukaryotes without revealing their sisters. We establish Percolomonadidae fam. n. for Percolomonas, excluding Pharyngomonas kirbyi g., sp. n. and Pharyngomonas (=Tetramastix=Percolomonas) salina comb. n., which unlike Percolomonas have two anterior and two posterior cilia and a pocket‐like pharynx, like “Macropharyngomonas”, now grouped with Pharyngomonas as a new purely zooflagellate class Pharyngomonadea, within a new subphylum Pharyngomonada; this contrasts them with the revised ancestrally amoeboflagellate subphylum Tetramitia. We discuss evolution of the percolozoan cytoskeleton and different body forms.  相似文献   
6.
Percolomonads (Heterolobosea) are aquatic heterotrophic flagellates frequently found in saline waters up to hypersaline environments. We isolated and cultivated seven strains of percolomonad flagellates from marine waters and sediments as well as from a hypersaline inland lake in the Atacama Desert. Morphological characterizations, comprising light and scanning electron microscopy, revealed only slight differences between the strains mainly limited to the cell shape, length of flagella, and length of the ventral feeding groove. Phylogenetic analyses of the 18S and 28S rDNA genes showed the formation of three fully supported clades within the Percolomonadida: the Percolomonadidae, the Barbeliidae fam. nov. and the Lulaidae fam. nov. We describe two new families (Barbeliidae fam. nov., Lulaidae fam. nov.), a new genus (Nonamonas gen. nov.), and five new species (Percolomonas adaptabilis sp. nov., Lula levis sp. nov., Barbelia pacifica sp. nov., Nonamonas montiensis gen. et sp. nov., Nonamonas santamariensis gen. et sp. nov.). Salinity experiments showed that P. adaptabilis sp. nov. from the Atlantic was better adapted to high salinities than all other investigated strains. Moreover, comparisons of our cultivation-based approach with environmental sequencing studies showed that P. adaptabilis sp. nov. seems to be globally distributed in marine surface waters while other species seem to be more locally restricted.  相似文献   
7.
8.
9.
The diversity of heterolobosean amoebae, important members of soil, marine and freshwater microeukaryote communities in the temperate zones, is greatly under-explored in high latitudes. To address this imbalance, we studied the diversity of this group of free-living amoebae in the Arctic and the Antarctic using culture dependent methods. Eighteen strain representatives of three heterolobosean genera, Allovahlkampfia Walochnik et Mulec, 2009 (1 strain), Vahlkampfia Chatton et Lalung-Bonnaier, 1912 (2) and Naegleria Alexeieff, 1912 (15) were isolated from 179 samples of wet soil and fresh water with sediments collected in 6 localities. The Allovahkampfia strain is the first representative of the genus from the Antarctic; 14 strains (7 from the Arctic, 7 from the Antarctic) of the highly represented genus Naegleria complete the ‘polar’ cluster of five Naegleria species previously known from the Arctic and Sub-Antarctic regions, whereas one strain enriches the ‘dobsoni’ cluster of Naegleria strains of diverse origin. Present isolations of Naegleria polaris De Jonckheere, 2006 from Svalbard, in the Arctic and Vega Island, in the Antarctic and N. neopolaris De Jonckheere, 2006 from Svalbard and Greenland in the Arctic, and James Ross Island, the Antarctic demonstrate their bipolar distribution, which in free-living amoebae has so far only been known for Vermistella Morand et Anderson, 2007.  相似文献   
10.
Two amoeba strains were isolated from marine sediment taken at the same place with 18 months interval from a region of the sea floor heated by extended submarine hot springs and fumaroles. These thermophilic amoebae grow at temperatures up to 50 °C. Sequences of the internal transcribed spacer demonstrated that the two strains belong to the same species and are different from any genus for which sequences are known. Phylogeny using small subunit ribosomal RNA places the amoeba in the Heterolobosea. Their closest relatives are the hypersaline flagellate Pleurostomum flabellatum and the hypersaline amoeba Tulamoeba peronaphora. The freshwater amoeboflagellate genera Naegleria and Willaertia belong to the same phylogenetic clade in the Vahlkampfiidae. The new marine species does not transform into flagellates. It forms cysts, which are round to ellipsoidal with few pores. Because of their unique place in the molecular phylogenetic tree, and because there is no morphologically identical species found in the literature, these isolates are considered to be a new species and a new genus, Marinamoeba thermophila.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号