首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   304篇
  免费   8篇
  国内免费   8篇
  320篇
  2024年   1篇
  2023年   5篇
  2022年   6篇
  2021年   2篇
  2020年   5篇
  2019年   8篇
  2018年   10篇
  2017年   5篇
  2016年   10篇
  2015年   5篇
  2014年   15篇
  2013年   37篇
  2012年   17篇
  2011年   13篇
  2010年   13篇
  2009年   17篇
  2008年   15篇
  2007年   18篇
  2006年   15篇
  2005年   16篇
  2004年   10篇
  2003年   9篇
  2002年   8篇
  2001年   5篇
  2000年   6篇
  1999年   4篇
  1998年   7篇
  1997年   7篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1987年   4篇
  1986年   2篇
  1984年   4篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有320条查询结果,搜索用时 15 毫秒
1.
2.
Previous studies have shown that the cholesteryl ester core of plasma low density lipoprotein (LDL) can be extracted with heptane and replaced with a variety of hydrophobic molecules. In the present report we use this reconstitution technique to incorporate two fluorescent probes, 3-pyrenemethyl-23, 24-dinor-5-cholen-22-oate-3β-yl oleate (PMCA oleate) and dioleyl fluorescein, into heptane-extracted LDL. Both fluorescent lipoprotein preparations were shown to be useful probes for visualizing the receptor-mediated endocytosis of LDL in cultured human fibroblasts. When normal fibroblasts were incubated at 37°C with either of the fluorescent LDL preparations, fluorescent granules accumulated in the perinuclear region of the cell. In contrast, fibroblasts from patients with the homozygous form of familial hypercholesterolemia (FH) that lack functional LDL receptors did not accumulate visible fluorescent granules when incubated with the fluorescent reconstituted LDL. A fluorescence-activated cell sorter was used to quantify the fluorescence intensity of individual cells that had been incubated with LDL reconstituted with dioleyl fluorescein. With this technique a population of normal fibroblasts could be distinguished from a population of FH fibroblasts. The current studies demonstrate the feasibility of using fluorescent reconstituted LDL in conjunction with the cell sorter to isolate mutant cells lacking functional LDL receptors.  相似文献   
3.
Mutations in the proprotein convertase PCSK9 gene are associated with autosomal dominant familial hyper- or hypocholesterolemia. These phenotypes are caused by a gain or loss of function of proprotein convertase subtilisin kexin 9 (PCSK9) to elicit the degradation of the low-density lipoprotein receptor (LDLR) protein. Herein, we asked whether the subcellular localization of wild-type PCSK9 or mutants of PCSK9 and the LDLR would provide insight into the mechanism of PCSK9-dependent LDLR degradation. We show that the LDLR is the dominant partner in regulating the cellular trafficking of PCSK9. In cells lacking the LDLR, PCSK9 localized in the endoplasmic reticulum (ER). In cells expressing the LDLR, PCSK9 sorted to post-ER compartments (i.e. endosomes in cell lines and Golgi apparatus in primary hepatocytes), where it colocalized with the LDLR. In cell lines, PCSK9 also colocalized with the LDLR at the cell surface, requiring the presence of the C-terminal Cys/His-rich domain of PCSK9. We provide evidence that PCSK9 promotes the degradation of the LDLR by an endocytic mechanism, as small interfering RNA-mediated knockdown of the clathrin heavy chain reduced the functional activity of PCSK9. We also compared the subcellular localization of natural mutants of PCSK9 with that of the wild-type enzyme in human hepatic (HuH7) cells. Whereas the mutants associated with hypercholesterolemia (S127R, F216L and R218S) localized to endosomes/lysosomes, those associated with hypocholesterolemia did not reach this compartment. We conclude that the sorting of PCSK9 to the cell surface and endosomes is required for PCSK9 to fully promote LDLR degradation and that retention in the ER prevents this activity. Mutations that affect this transport can lead to hyper- or hypocholesterolemia.  相似文献   
4.
Consumption of plant sterols and treatment with ezetimibe both reduce cholesterol absorption in the intestine. However, the mechanism of action differs between the two treatments, and the consequences of combination treatment are unknown. Therefore, we performed a double-blind, placebo-controlled, crossover study for the plant sterol component with open-label ezetimibe treatment. Forty mildly hypercholesterolemic subjects were randomized to the following treatments for 4 weeks each: 10 mg/day ezetimibe combined with 25 g/day control spread; 10 mg/day ezetimibe combined with 25 g/day spread containing 2.0 g of plant sterols; 25 g/day spread containing 2.0 g of plant sterols; and placebo treatment consisting of 25 g/day control spread. Combination treatment of plant sterols and ezetimibe reduced low density lipoprotein cholesterol (LDL-C) by 1.06 mmol/l (25.2%; P < 0.001) compared with 0.23 mmol/l (4.7%; P = 0.006) with plant sterols and 0.94 mmol/l (22.2%; P < 0.001) with ezetimibe monotherapy. LDL-C reduction conferred by the combination treatment did not differ significantly from ezetimibe monotherapy (-0.12 mmol/l or -3.5%; P = 0.13). Additionally, the plasma lathosterol-to-cholesterol ratio increased with all treatments. Sitosterol and campesterol ratios increased after plant sterol treatment and decreased upon ezetimibe and combination therapy. Our results indicate that the combination of plant sterols and ezetimibe has no therapeutic benefit over ezetimibe monotherapy in subjects with mild hypercholesterolemia.  相似文献   
5.
We investigated the relationship between the development of hypercholesterolemia in rabbits and cholesteryl ester transfer protein (CETP) activity secretion by their perfused livers. Two inbred strains of rabbits were compared which differ markedly in their hypercholesterolemic response to dietary cholesterol. Feeding a high-cholesterol (0.3%) diet, increased plasma and liver cholesterol levels in the two strains, the increments being 15 mM and 30 μmol/g greater in the hyperresponders, respectively. The high-cholesterol diet caused an about 2-fold increased hepatic secretion of CETP activity, but there was no difference between the two rabbit strains. Feeding a lower amount of dietary cholesterol (0.08%) also caused higher cholesterolemic (2 mM) and hepatocholesterolic (28 μmol/g) responses in hyper- than in hyporesponsive rabbits. The activity of hepatic CETP secretion was not increased by the low-cholesterol diet, and there was no difference between hypo- and hyperresponsive rabbits. Cholesterol feeding increased plasma CETP activity by 90% in both rabbit strains, but there was no difference between the strains. Our combined data suggest that with increasing plasma cholesterol levels, hepatic CETP secretion may be increased in a parabolic manner, reaching its maximum rate far before plasma cholesterol concentrations are maximal. There were no differences in hepatic CETP activity secretion or plasma CETP activity levels between the genetically different strains of hypo- and hyperresponsive rabbits.  相似文献   
6.
7.
Familial Mediterranean Fever (FMF) is an autosomal recessive hereditary disease leading mostly to renal failure and nephrotic syndrome. The ultrastructure of kidney has not been fully investigated in FMF associated renal disease. The aim of this study is to provide further evidence on the ultrastructure of kidney in patients with FMF who suffer from renal disease. Renal biopsies obtained from two patients who were diagnosed with FMF renal disease complications were examined. Examination of renal tissue by light and electron microscopy identified degenerations both in tubules and the filtration barrier. Foot processes were partly effaced. Amorphous material was found in thickened glomerular basement membranes. Fibrous material deposits in thick Bowman's capsule wall were also seen. Finally, degeneration in the form of folding of plasma membrane and vacuolization as well as fusion in mitochondria cristae, was observed. Accumulation of tissue remnants in the lumen was also found in tubules.  相似文献   
8.
Familial hypercholesterolemia (FH) is a monogenic lipid disorder which promotes atherosclerosis and cardiovascular diseases. Owing to the lack of sufficient published information, this study aims to identify the potential genetic biomarkers for FH by studying the global gene expression profile of blood cells. The microarray expression data of FH patients and controls was analyzed by different computational biology methods like differential expression analysis, protein network mapping, hub gene identification, functional enrichment of biological pathways, and immune cell restriction analysis. Our results showed the dysregulated expression of 115 genes connected to lipid homeostasis, immune responses, cell adhesion molecules, canonical Wnt signaling, mucin type O-glycan biosynthesis pathways in FH patients. The findings from expanded protein interaction network construction with known FH genes and subsequent Gene Ontology (GO) annotations have also supported the above findings, in addition to identifying the involvement of dysregulated thyroid hormone and ErbB signaling pathways in FH patients. The genes like CSNK1A1, JAK3, PLCG2, RALA, and ZEB2 were found to be enriched under all GO annotation categories. The subsequent phenotype ontology results have revealed JAK3I, PLCG2, and ZEB2 as key hub genes contributing to the inflammation underlying cardiovascular and immune response related phenotypes. Immune cell restriction findings show that above three genes are highly expressed by T-follicular helper CD4+ T cells, naïve B cells, and monocytes, respectively. These findings not only provide a theoretical basis to understand the role of immune dysregulations underlying the atherosclerosis among FH patients but may also pave the way to develop genomic medicine for cardiovascular diseases.  相似文献   
9.
Role of Smad4 (DPC4) inactivation in human cancer   总被引:23,自引:0,他引:23  
The tumor suppressor gene Smad4 (DPC4) at chromosome 18q21.1 belongs to the Smad family, which mediates the TGFbeta signaling pathway suppressing epithelial cell growth. This review summarizes the mutational events of the Smad4 gene in human cancer. The Smad4 gene is genetically responsible for familial juvenile polyposis, an autosomal dominant disease characterized by predisposition to gastrointestinal polyps and cancer. In this syndrome, polyps are formed by inactivation of the Smad4 gene through germline mutation and loss of the unaffected wild-type allele. In pancreatic and colorectal cancer, inactivation of the Smad4 gene through homozygous deletion or intragenic mutation occurs frequently in association with malignant progression. However, mutation of this gene is seen only occasionally in the rest of human cancers. The majority of Smad4 gene mutations in human cancer are missense, nonsense, and frameshift mutations at the mad homology 2 region (MH2), which interfere with the homo-oligomer formation of Smad4 protein and the hetero-oligomer formation between Smad4 and Smad2 proteins, resulting in disruption of TGFbeta signaling. Supporting evidence for the above observation was provided by genetically manipulated mice carrying either a heterozygote of the Smad4 gene or a compound heterozygote of the Smad4 and APC genes, which develop either gastrointestinal polyps/cancer mimicking familial juvenile polyposis or progressed colorectal cancer, respectively.  相似文献   
10.
Both, diabetes mellitus (DM) and hypercholesterolemia (HCH) are known as risk factors of ischemic heart disease, however, the effects of experimental DM, as well as of HCH alone, on ischemia/reperfusion-induced myocardial injury are not unequivocal. We have previously demonstrated an enhanced resistance to ischemia-induced arrhythmias in rat hearts in the acute phase of DM. Our objectives were thus to extend our knowledge on how DM in combination with HCH, a model that is relevant to diabetic patients with altered lipid metabolism, may affect the size of myocardial infarction and susceptibility to arrhythmias. A combination of streptozotocin (STZ; 80 mg/kg, i.p.) and the fat–cholesterol diet (1% cholesterol, 1% coconut oil; FCHD) was used as a double-disease model mimicking DM and HCH simultaneosly occurring in humans. Following 5 days after STZ injection and FCHD leading to increased blood glucose and cholesterol levels, anesthetized open-chest diabetic, diabetic–hypercholesterolemic (DM–HCH) and age-matched control rats were subjected to 6-min ischemia (occlusion of LAD coronary artery) followed by 10 reperfusion to test susceptibility to ventricular arrhythmias in the in vivo experiments and to 30-min ischemia and subsequent 2-h reperfusion for the evaluation of the infarct size (IS) in the Langendorff-perfused hearts. The incidence of the most life-threatening ventricular arrhythmia, ventricular fibrillation, was significantly increased in the DM–HCH rats as compared with non-diabetic control animals (100% vs. 50%; p<0.05). Likewise, arrhythmia severity score (AS) was significantly higher in the DM–HCH rats than in the controls (4.9±0.2 vs. 3.5±0.5; p<0.05), but was not increased in the diabetic animals (AS 3.7±0.9; p>0.05 vs. controls). Diabetic hearts exhibited a reduced IS (15.1±3.0% of the area at risk vs. 37.6±2.8% in the control hearts; p<0.05), however, a combination of DM and HCH increased the size of myocardial infarction to that observed in the controls. In conclusion, HCH abrogates enhanced resistance to ischemia-reperfusion injury in the diabetic rat heart.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号