排序方式: 共有68条查询结果,搜索用时 0 毫秒
1.
Laska MJ Strandbygård D Kjeldgaard A Mains M Corydon TJ Memon AA Sørensen BS Vogel U Jensen UB Nexø BA 《Experimental cell research》2007,313(12):2611-2621
The RAI gene is also known as iASPP and PPP1R13L. Recent investigations have shown that the region encompassing RAI is important for the development of cancer in young and middle-aged persons. It has been speculated that the RAI product induces apoptosis by blocking NF-kappaB or inhibits apoptosis by blocking p53. Either way the gene could influence the survival of precancerous lesions. Here we report that the expression of RAI mRNA was increased in non-transformed lymphocytes and fibroblasts induced to undergo apoptosis by various means, such as treatment with etoposide, calcium ions, or interleukin-2 and/or serum deprivation. Treatment with etoposide increased the content of RAI protein, too, and caused it to translocate to the nucleus. Inhibition of RAI expression in lymphocytes and fibroblasts with siRNA reduced apoptosis, but treatment with the NF-kappaB-inhibiting substance sulfasalazine relieved this dependence. In the transformed cell line HEK-293 the association between RAI induction and apoptosis seemed broken. Thus, we hypothesize that RAI induction is necessary but not sufficient for apoptosis induction in non-transformed cells. Our results could be explained by a NF-kappaB mediated mechanism. 相似文献
2.
3.
Lundin C Samuelsson MK Helleday T 《Biochemical and biophysical research communications》2002,296(2):363-367
Overexpressed cyclin E in tumours is a prognosticator for poor patient outcome. Cells that overexpress cyclin E have been shown to be impaired in S-phase progression and exhibit genetic instability that may drive this subset of cancers. However, the origin for genetic instability caused by cyclin E overexpression is unknown. Homologous recombination plays an important role in S-phase progression and is also regulated by the same proteins that regulate cyclin E-associated kinase activity, i.e., p53 and p21. To test the hypothesis that overexpressed cyclin E causes genetic instability through homologous recombination, we investigated the effect of cyclin E overexpression on homologous recombination in the hprt gene in a Chinese hamster cell line. Although cyclin E overexpression shortened the G1 phase in the cell cycle as expected, we could see no change in neither spontaneous nor etoposide-induced recombination. Also, overexpression of cyclin E did not affect the repair of DNA double-strand breaks and failed to potentiate the cytotoxic effects of etoposide. Our data suggest that genetic instability caused by overexpression of cyclin E is not mediated by aberrant homologous recombination. 相似文献
4.
Etoposide (VP-16) is known to promote cell apoptosis either in cancer or in normal cells as a side effect. This fact is preceded by the induction of several mitochondrial events, including increase in Bax/Bcl-2 ratio followed by cytochrome c release and consequent activation of caspase-9 and -3, reduction of ATP levels, depolarization of membrane potential (DeltaPsi) and rupture of the outer membrane. These events are apoptotic factors essentially associated with the induction of the mitochondrial permeability transition (MPT). VP-16 has been shown to stimulate the Ca2+-dependent MPT induction similarly to prooxidants and to promote apoptosis by oxidative stress mechanisms, which is prevented by glutathione (GSH) and N-acetylcysteine (NAC). Therefore, the aim of this work was to study the effects of antioxidants and thiol protecting agents on MPT promoted by VP-16, attempting to identify the underlying mechanisms on VP-16-induced apoptosis. The increased sensitivity of isolated mitochondria to Ca2+-induced swelling, Ca2+ release, depolarization of DeltaPsi and uncoupling of respiration promoted by VP-16, which are prevented by cyclosporine A proving that VP-16 induces the MPT, are also efficiently prevented by ascorbate, the primary reductant of the phenoxyl radicals produced by VP-16. The thiol reagents GSH, dithiothreitol and N-ethylmaleimide, which have been reported to prevent the MPT induction, also protect this event promoted by VP-16. The inhibition of the VP-16-induced MPT by antioxidants agrees with the prevention of etoposide-induced apoptosis by GSH and NAC and suggests the generation of oxidant species as a potential mechanism underlying the MPT that may trigger the release of mitochondrial apoptogenic factors responsible for apoptotic cascade activation. 相似文献
5.
Vitali R Cesi V Tanno B Ferrari-Amorotti G Dominici C Calabretta B Raschellà G 《Biochemical and biophysical research communications》2008,368(2):350-356
We tested the activity of a p53 carboxy-terminal peptide containing the PARC-interacting region in cancer cells with wild type cytoplasmic p53. Peptide delivery was achieved by fusing it to the TAT transduction domain (TAT-p53-C-ter peptide). In a two-hybrid assay, the tetramerization domain (TD) of p53 was necessary and sufficient to bind PARC. The TAT-p53-C-ter peptide disrupted the PARC-p53 complex. Peptide treatment caused p53 nuclear relocation, p53-dependent changes in gene expression and enhancement of etoposide-induced apoptosis. These studies suggest that PARC-interacting peptides are promising candidates for the enhancement of p53-dependent apoptosis in tumors with wt cytoplasmic p53. 相似文献
6.
Alexandria A. Oviatt Jissy A. Kuriappan Elirosa Minniti Kendra R. Vann Princess Onuorah Anna Minarini Marco De Vivo Neil Osheroff 《Bioorganic & medicinal chemistry letters》2018,28(17):2961-2968
Etoposide is an anticancer drug that acts by inducing topoisomerase II-mediated DNA cleavage. Despite its wide use, etoposide is associated with some very serious side-effects including the development of treatment-related acute myelogenous leukemias. Etoposide targets both human topoisomerase IIα and IIβ. However, the contributions of the two enzyme isoforms to the therapeutic vs. leukemogenic properties of the drug are unclear. In order to develop an etoposide-based drug with specificity for cancer cells that express an active polyamine transport system, the sugar moiety of the drug has been replaced with a polyamine tail. To analyze the effects of this substitution on the specificity of hybrid molecules toward the two enzyme isoforms, we analyzed the activity of a series of etoposide-polyamine hybrids toward human topoisomerase IIα and IIβ. All of the compounds displayed an ability to induce enzyme-mediated DNA cleavage that was comparable to or higher than that of etoposide. Relative to the parent drug, the hybrid compounds displayed substantially higher activity toward topoisomerase IIβ than IIα. Modeling studies suggest that the enhanced specificity may result from interactions with Gln778 in topoisomerase IIβ. The corresponding residue in the α isoform is a methionine. 相似文献
7.
Sung-Hun Woo Bohee Kim Sung Hoon Kim Byung Chul Jung Yongheum Lee Yoon Suk Kim 《BMB reports》2022,55(3):148
Etoposide is a chemotherapeutic medication used to treat various types of cancer, including breast cancer. It is established that pulsed electromagnetic field (PEMF) therapy can enhance the effects of anti-cancer chemotherapeutic agents. In this study, we investigated whether PEMFs influence the anti-cancer effects of etoposide in MCF-7 cells and determined the signal pathways affected by PEMFs. We observed that co-treatment with etoposide and PEMFs led to a decrease in viable cells compared with cells solely treated with etoposide. PEMFs elevated the etoposide-induced PARP cleavage and caspase-7/9 activation and enhanced the etoposide-induced down-regulation of survivin and up-regulation of Bax. PEMF also increased the etoposide-induced activation of DNA damage-related molecules. In addition, the reactive oxygen species (ROS) level was slightly elevated during etoposide treatment and significantly increased during co-treatment with etoposide and PEMF. Moreover, treatment with ROS scavenger restored the PEMF-induced decrease in cell viability in etoposide-treated MCF-7 cells. These results combined indicate that PEMFs enhance etoposide-induced cell death by increasing ROS induction–DNA damage–caspase-dependent apoptosis. 相似文献
8.
The purpose of this paper was to study the effect of the isopropyl myristic acid ester (IPM) on the physicochemical characteristics
of etoposide-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres-specifically, the effects on the size and drug loading
of the microspheres, the polymer matrix and surface morphology, and the release of etoposide from the microspheres. The experiment
was structured to examine 2 IPM concentrations (25% and 50%) and 1 control (no IPM) at 2 different etoposide-loading percentages
(10% and 5%). The microspheres were prepared using a single-emulsion solvent-extraction procedure. Samples from each batch
of microspheres were then analyzed for size distribution. drug-loading efficiency, surface characteristics, in vitro release,
and in vitro microsphere degradation. The incorporation of 50% IPM significantly increased (P<05) the size of the microspheres when compared with the control and 25% IPM microspheres. However, incorporation of 25% or
50% IPM did not change (P>.05) the drug-loading efficiency in comparison with the microspheres prepared without IPM. The microspheres containing 50%
IPM were shown to significantly increase (P<.05) the release of etoposide from the microspheres at both etoposide concentrations. The microspheres prepared incorporating
25% IPM and 5% etoposide increased the in vitro release (P<.05) in comparison with the microspheres prepared without IPM. The 5% etoposide-PLGA microspheres showed a smooth, nonporous
surface that changed to a dimpled. nonporous surface after addition of 25% IPM. During the in vitro degradation study, the
IPM-containing microspheres slowly became porous but retained their structural integrity throughout the experiment. 相似文献
9.
Fredrik M. Berglund 《Biochemical and biophysical research communications》2009,381(1):59-6016
Cellular responses to DNA damage are orchestrated by the large phosphoinositol-3-kinase related kinases ATM, ATR and DNA-PK. We have developed a cell-free system to dissect the biochemical mechanisms of these kinases. Using this system, we identify heterogeneous nuclear ribonucleoprotein U (hnRNP-U), also termed scaffold attachment factor A (SAF-A), as a specific substrate for DNA-PK. We show that hnRNP-U is phosphorylated at Ser59 by DNA-PK in vitro and in cells in response to DNA double-strand breaks. Phosphorylation of hnRNP-U suggests novel functions for DNA-PK in the response to DNA damage. 相似文献
10.
Carlos LizamaAndreas Ludwig Ricardo D. Moreno 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2011,1813(1):120-128
Etoposide is a widely used anticancer drug in the treatment of different tumors. Etoposide is known to activate a wide range of intracellular signals, which may in turn induce cellular responses other than apoptosis. ADAM10 and TACE/ADAM17 belong to a family of transmembrane extracellular metalloproteinases involved in paracrine/juxtacrine regulation of many signaling pathways. The aim of this work was to evaluate if etoposide induces upregulation of ADAM10 or TACE/ADAM17 in two cell lines (GC-1 and GC-2) derived from male germ cells. Results showed that etoposide induced apoptosis in a dose-response manner in both GC-1 and GC-2 cells. Apoptosis started to increase 6 h after etoposide addition in GC-2 cells, whereas the same was observed 18 h after addition to the GC-1 cells. Protein and mRNA levels of ADAM10 and TACE/ADAM17 increased 18 h after etoposide was removed from the GC-1 cells. In GC-2 cells, the protein levels of both proteins increased 12 h after etoposide was removed. ADAM10 mRNA increased after 3 h and then steadily decreased up to 12 h after removal, whereas TACE/ADAM17 mRNA decreased after etoposide removal. Finally, apoptosis was prevented in GC-1 and GC-2 cells by the addition of pharmacological inhibitors of ADAM10 and TACE/ADAM17 to the culture medium of etoposide-treated cells. Our results show for the first time that etoposide upregulates ADAM10 and TACE/ADAM17 mRNA and protein levels. In addition, we also show that ADAM10 and TACE/ADAM17 have a role in etoposide-induced apoptosis. 相似文献