首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  2019年   4篇
  2018年   6篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  1998年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Oxidative stress has been regarded as the leading mechanism of the hepatotoxicity of clofibrate (CF). To achieve multifunctional novel hypolipidemic agents with hypolipidemia, antioxidant, and ameliorating liver injury, clofibric acid derivative hydroxytyrosol-clofibrate (CF-HT) was synthesized by molecular hybridization. CF-HT exhibited significant hypolipidemia, reducing serum triglyceride (TG), total cholesterol (TC), and malonaldehyde (MDA) by 30%, 33%, and 29% in hyperlipidemic mice induced by Triton WR 1339. CF-HT also shown hepatoprotective effect, a significant decrease in hepatic indices toxicity was observed, i.e. aspartate and lactate transaminases (AST and ALT) activities, alkalines phosphatases (ALP), and total bilirubin (TBIL) levels. The liver weight and liver coefficient were also ameliorated. Serum superoxide dismutase (SOD) was significantly elevated, and serum catalase (CAT) and malondialdehyde (MDA) content were remarkably restored. The hepatic glutathione (GSH) content was obviously increased and hepatic oxidized glutathione (GSSG) content was reduced dramatically by CF-HT, as compared to the CF treated mice (p?<?0.05). Moreover, the histopathological damage that hepatocyte hyperplasia and hypertrophy was also significantly ameliorated by treatment with CF-HT. Therefore, the results indicated that CF-HT exerted more potent hypolipidemic activity and definite hepatoprotective effect which may mainly be associated with its antioxidative property in mice.  相似文献   
2.
The design and synthesis of a library of forty novel 2-aminoazole analogues as well as their evaluation as antifungal compounds against Histoplasma capsulatum and Cryptococcus neoformans is described. These structures were derived from N-[5-(1-naphthalenylmethyl)-2-thiazolyl]cyclohexanecarboxamide (41F5), a fungistatic agent previously identified through phenotypic screening (Antimicrob Agents Chemother. 2013;57:4349). Modifications to improve potency and water-solubility of 41F5 focused primarily on the 5-naphthalenyl group, the thiazole core, and the methylene linker between these two structural elements. In general, compounds with lipophilic [5+6] bicyclic ring systems, such as the 7-benzothiophenyl- and 4-indanyl groups, at the 5-position were 2–3 times more active against both fungal species as compared to 41F5. Also, introduction of a carbonyl group at the methylene linker of 41F5 resulted in a 2–3-fold increase in potency. These highly active compounds also showed generally low toxicities against murine P388D1 macrophages resulting in selectivity indices ranging from 63 to >200. Compounds that were highly active against fluconazole-sensitive C. neoformans strains had almost identical activity against fluconazole-resistant variants of this fungus indicating that 14α-demethylase is not their molecular target. Highly active compounds also retained activity against H. capsulatum phagocytosed into P388D1 macrophages.  相似文献   
3.
A series of novel dipeptidyl boronic acid inhibitors of 20S proteasome were designed and synthesized. Aliphatic groups at R1 position were designed for the first time to fully understand the SAR (structure–activity relationship). Among the screened compounds, novel inhibitor 5c inhibited the CT-L (chymotrypsin-like) activity with IC50 of 8.21?nM and the MM (multiple myeloma) cells RPMI8226, U266B and ARH77 proliferations with the IC50 of 8.99, 6.75 and 9.10?nM, respectively, which showed similar in vitro activities compared with the compound MLN2238 (biologically active form of marketed MLN9708). To investigate the oral availability, compound 5c was esterified to its prodrug 6a with the enzymatic IC50 of 6.74?nM and RPMI8226, U266B and ARH77 cell proliferations IC50 of 2.59, 4.32 and 3.68?nM, respectively. Furthermore, prodrug 6a exhibited good pharmacokinetic properties with oral bioavailability of 24.9%, similar with MLN9708 (27.8%). Moreover, compound 6a showed good microsomal stabilities and displayed stronger in vivo anticancer efficacy than MLN9708 in the human ARH77 xenograft mouse model. Finally, cell cycle results showed that compound 6a had a significant inhibitory effect on CT-L and inhibited cell cycle progression at the G2M stage.  相似文献   
4.
Most ischemic stroke results from brain blood vessel blockage by platelet-mediated thrombus, and anti-platelet therapy has been demonstrated clinical benefits in the treatment of this disease. In the present work, novel nitric oxide (NO)-releasing derivatives of an anti-ischemic stroke drug 3-n-butylphthalide (NBP) were synthesized. Compounds 7a and 7c exhibited more potent anti-platelet activity than NBP and aspirin, and released a moderate amount of NO, which is beneficial in improving cardiovascular and cerebral circulation. These findings provide an alternative approach to the development of drugs more potent than NBP for the intervention of ischemic stroke.  相似文献   
5.
Seminolipids 1a and 1b and galactosylalkylacylglycerols 2a and 2b, labelled with deuterium on the alkyl or acyl chain, respectively, were obtained isotopically and chemically pure through a straightforward synthesis from protected glycidyl galactoside 3 in an overall 22% yield. The identity and purity of compounds was ascertained by NMR spectroscopy and ESI mass spectrometry analysis. These labelled compounds are important as internal standards for quantification of these lipids by mass spectrometry, and they could also be used in metabolic studies in in vitro and even in vivo systems. Extension of the procedure could provide a route for the preparation of isotopomers of other compounds of the same general class.  相似文献   
6.
In this study, a new series of heterodimers was synthesized. These derivatives are N,N-bis(alkanol)amine aryl esters or N,N-bis(ethoxyethanol)amine aryl esters carrying a methoxylated aryl residue combined with a flavone or chromone moiety. The new compounds were studied to evaluate their P-gp modulating activity on a multidrug-resistant leukemia cell line. Some of the new compounds show a good MDR reversing activity; interestingly this new series of compounds does not comply with the structure-activity relationships (SAR) outlined by previously synthesized analogs carrying different aromatic moieties. In the case of the compounds described in this paper, activity is linked to different features, in particular the characteristics of the spacer, which seem to be critical for the interaction with the pump. This fact indicates that the presence of a flavone or chromone residue influences the SAR of these series of products, and that flexible molecules can find different productive binding modes with the P-gp recognition site. These results support the synthesis of new compounds that might be useful leads for the development of drugs to control P-gp-dependent MDR.  相似文献   
7.
Inosine 5′-monophosphate dehydrogenase (IMPDH, EC 1.1.1.205) catalyzes a crucial step in guanine nucleotide biosynthesis, thereby governing cell proliferation. In contrast to mammalian IMPDHs, microbial IMPDHs are relatively less explored as potential targets for antimicrobial drug discovery. In continuation with our previous work, here we report the discovery of moderately potent and highly selective Helicobacter pylori IMPDH (HpIMPDH) inhibitors. The present study is mainly focused around our previously identified, modestly potent and relatively nonselective (for HpIMPDH over human IMPDH2) hit molecule IX (16i). In an attempt to optimize the selectivity for the bacterial enzyme, we screened a set of 48 redesigned new chemical entities (NCEs) belonging to 5-aminoisobenzofuran-1(3H)-one series for their in vitro HpIMPDH and human IMPDH2 inhibition. A total of 12 compounds (hits) demonstrated ≥70% HpIMPDH inhibition at 10 μM concentration; none of the hits were active against hIMPDH2. Compound 24 was found to be the most potent and selective molecule (HpIMPDH IC50 = 2.21 µM) in the series. The study reaffirmed the utility of 5-aminoisobenzofuran-1(3H)-one as a promising scaffold with great potential for further development of potent and selective HpIMPDH inhibitors.  相似文献   
8.
A series of small molecules based on a chemotype identified from our compound collection were synthesized and tested for binding affinity (IC(50)) at the human Neuropeptide Y Y(2) receptor (NPY Y(2)). Six of the 23 analogs tested possessed an NPY Y(2) IC(50) ≤ 15 nM. One member of this series, JNJ 31020028, is a selective, high affinity, receptor antagonist existing as a racemic mixture. As such a synthetic route to the desired enantiomer was designed starting from commercially available (S)-(+)-mandelic acid.  相似文献   
9.
A new series of novel cinnamic acyl sulfonamide derivatives were designed and synthesized and evaluated their anti-tubulin polymerization activities and anticancer activities. One of these compounds, compound 5a with a benzdioxan group, was observed to be an excellent tubulin inhibitor (IC50?=?0.88?µM) and display the best antiproliferative activity against MCF-7 with an IC50 value of 0.17?μg/mL. Docking simulation was performed to insert compound 5a into the crystal structure of tubulin at colchicine binding site to determine the probable binding model. 3D-QSAR model was also built to provide more pharmacophore understanding that could be used to design new agents with more potent anti-tubulin polymerization activity.  相似文献   
10.
Recent studies revealed that MALT1 is a promising therapeutic target for the treatment of ABC-DLBCL. Among several reported MALT1 inhibitors, MI-2 as an irreversible inhibitor represents a new class of ABC-DLBCL therapeutics. Due to its inherent potential cross-reactivity, further structure–activity relationship (SAR) study is imperative. In this work, five focused compound libraries based on the chemical structure of MI-2 are designed and synthesized. The systematic SARs revealed that the side chain of 2-methoxyethoxy has little impact on the activity and can be replaced by other functionalized groups, providing new MI-2 analogues with retained or enhanced potency. Compounds 8183 with terminal hydroxyl group as side chain displayed enhanced activities against MALT1. Replacement of triazole core with pyrazole is also tolerant, while structural modifications on other sites are detrimental. These findings will facilitate further development of small-molecule MALT1 inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号