首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   422篇
  免费   52篇
  国内免费   27篇
  501篇
  2024年   4篇
  2023年   5篇
  2022年   8篇
  2021年   18篇
  2020年   13篇
  2019年   12篇
  2018年   14篇
  2017年   17篇
  2016年   11篇
  2015年   11篇
  2014年   12篇
  2013年   29篇
  2012年   17篇
  2011年   20篇
  2010年   12篇
  2009年   18篇
  2008年   17篇
  2007年   14篇
  2006年   26篇
  2005年   16篇
  2004年   17篇
  2003年   13篇
  2002年   4篇
  2001年   6篇
  2000年   8篇
  1999年   7篇
  1998年   9篇
  1997年   12篇
  1996年   10篇
  1995年   9篇
  1994年   10篇
  1993年   3篇
  1992年   3篇
  1991年   9篇
  1990年   5篇
  1989年   5篇
  1988年   4篇
  1987年   6篇
  1985年   7篇
  1984年   6篇
  1983年   2篇
  1982年   7篇
  1981年   4篇
  1980年   7篇
  1979年   6篇
  1978年   6篇
  1977年   2篇
  1976年   9篇
  1972年   3篇
  1970年   3篇
排序方式: 共有501条查询结果,搜索用时 15 毫秒
1.
Summary Single photoreceptor cells in the compound eye of the housefly Musca domestica were selectively illuminated and subsequently compared electron-microscopically with the unilluminated photoreceptors in the immediate surroundings. The rhabdomeres of the illuminated cells remain largely unaffected, but the cells show an increase in the number of coated pits, various types of vesicles, and degradative organelles; some of the latter organelles are described for the first time in fly photoreceptors. Coated pits are found not only at the bases of the microvilli, but also in other parts of the plasma membrane. Degradative organelles, endoplasmic reticulum (ER) and mitochondria aggregate in the perinuclear region. The rough ER and smooth ER are more elaborate, the number of Golgi stacks, free ribosomes and polysomes is increased, and the shape and distribution of heterochromatin within the nuclei are altered. Illuminated photoreceptors also interdigitate extensively with their neighbouring secondary pigment cells. These structural changes in illuminated fly photoreceptor cells indicate an increase in membrane turnover and cellular metabolism. When applied to the eye, Lucifer Yellow spreads into the extracellular space and is taken up only by the illuminated photoreceptor cells. These cells show the same structural modifications as above. Horseradish peroxidase applied in the same way is observed in pinocytotic vesicles and degradative organelles of the illuminated cells. Hence, the light-induced uptake of extracellular compounds takes place in vivo at least partially as a result of an increase in pinocytosis.  相似文献   
2.
Summary In the superposition eyes of the sphingid moth Deilephila and the neuropteran Ascalaphus, adjustment to different intensities is subserved by longitudinal migrations of screening pigment in specialized pigment cells. Using ophthalmoscopic techniques we have localized the light-sensitive trigger that controls pigment position.In both species, local illumination of a small spot anywhere within the eye glow of a dark-adapted eye evokes local light adaptation in the ommatidia whose facets receive the light. Details of the response pattern demonstrate that a distal light-sensitive trigger is located axially in the ommatidium, just beneath the crystalline cone, and extends with less sensitivity deep into the clear zone. The distal trigger in Deilephila was shown to be predominantly UV sensitive, and a UV-absorbing structure, presumably the distal trigger, was observed near the proximal tip of the crystalline cone.In Ascalaphus we also found another trigger located more proximally, which causes local pigment reaction in the ommatidia whose rhabdoms are illuminated (the centre of the eye glow). The light-sensitive trigger for this response appears to be the rhabdom itself.  相似文献   
3.
Summary The photoreceptors in the compound eye of a cabbage butterfly, Pieris rapae, were examined by conventional and intracellular-labeling electron microscopy by the use of the cobalt(III)-lysine complex as an ionized marker. Five types of spectral sensitivity were recorded intracellularly in electrophysiological experiments. They peaked at about 340, 380, 480, 560 and 620 nm, respectively. One of the distal retinula cells (R2) was a UV receptor, whereas the R4 distal retinula cell was a green receptor. The basal retinula cell, R9, was found to be a red receptor; it was localized near the basement membrane, having a bilobed cell body with an individual nucleus in each lobe. A small number of rhabdomere microvilli were present in a narrow cytoplasmic bridge connecting the two lobes. The axons of six retinula cells (R3–R8) in each ommatidium terminated at the cartridge in the lamina (short visual fiber), whereas those of the other three retinula cells, R1, R2 and R9, extended to the medulla (long visual fiber). The information from the UV and red receptors is therefore probably delivered directly to the medulla neurons, independent of that from the other spectral receptor types.  相似文献   
4.
Summary The cell-body layer of the lamina ganglionaris of the housefly, Musca domestica, contains the perikarya of five types of monopolar interneuron (L1–L5) along with their enveloping neuroglia (Strausfeld 1971). We confirm previous reports (Trujillo-Cenóz 1965; Boschek 1971) that monopolar cell bodies in the lamina form three structural classes: Class I, Class II, and midget monopolar cells. Class-I cells (L1 and L2) have large (8–15 m) often crescentshaped cell bodies, much perinuclear cytoplasm and deep glial invaginations. Class-II cells (L3 and L4) have smaller perikarya (4–8 m) with little perinuclear cytoplasm and no glial invaginations. The midget monopolar cell (L5) resides at the base of the cell-body layer and has a cubshaped cell body. Though embedded within a reticulum of satellite glia, the L1–L4 monopolar perikarya and their immediately proximal neurites frequently appose each other directly. Typical arthropod (-type) gap junctions are routinely observed at these interfaces. These junctions can span up to 0.8 m with an intercellular space of 2–4 nm. The surrounding nonspecialized interspace is 12–20 nm. Freezefracture replicas of monopolar appositions confirm the presence of -type gap junctions, i.e., circular plaques (0.15–0.7 m diam.) of large (10–15 nm) E-face particles. Gap junctions are present between Class I somata and their proximal neurites, between Class I and Class II somata and proximal neurites, and between Class II somata. Intercartridge coupling may exist between such monopolar somata. The cell body and proximal neurite of L5 were not examined. We also find that Class I and Class II somata are extensively linked to their satellite glia via gap junctions. The gap width and nonjunctional interspace between neuron and glia are the same as those found between neurons. The particular arrangement and morphology of lamina monopolar neurons suggest that coupling or low resistance pathways between functionally distinct neurons and between neuron and glia are probably related to the metabolic requirements of the nuclear layer and may play a role in wide field signal averaging and light adaptation.  相似文献   
5.
Summary In the fly, Calliphora erythrocephala, a cluster of three Y-shaped descending neurons (DNOVS 1–3) receives ocellar interneuron and vertical cell (VS4–9) terminals. Synaptic connections to one of them (DNOVS 1) are described. In addition, three types of small lobula plate vertical cell (sVS) and one type of contralateral horizontal neuron (Hc) terminate at DNOVS 1, as do two forms of ascending neurons derived from thoracic ganglia. A contralateral neuron, with terminals in the opposite lobula plate, arises at the DNOVS cluster and is thought to provide heterolateral interaction between the VS4–9 output of one side to the VS4–9 dendrites of the other. DNOVS 2 and 3 extend through pro-, meso-, and metathoracic ganglia, branching ipsilaterally within their tract and into the inner margin of leg motor neuropil of each ganglion. DNOVS 1 terminates as a stubby ending in the dorsal prothoracic ganglion onto the main dendritic trunks of neck muscle motor neurons. Convergence of VS and ocellar interneurons to DNOVS 1 comprises a second pathway from the visual system to the neck motor, the other being carried by motor neurons arising in the brain. Their significance for saccadic head movement and the stabilization of the retinal image is discussed.  相似文献   
6.
The band-legged ground cricket Pteronemobius nigrofasciatus shows a clear photoperiodic response at 25°C with respect to the control of the induction of embryonic diapause. When crickets were reared under a short-day (LD 12 12) photoperiod and then transferred to a long-day (LD 16 8) photoperiod upon adult emergence, the adults mainly laid nondiapause eggs. However, adults maintained continuously under short-day conditions laid dispause eggs. When compound eyes were bilaterally removed after adult emergence, the crickets mainly laid nondiapause eggs, irrespective of the photoperiod. Thus, the adults completely lost their sensitivity to photoperiod after bilateral removal of their compound eyes. Unilateral removal of the compound eye also affected the crickets under a short-day photoperiod, and the incidence of diapause eggs was intermediate between that laid by intact adults and that laid by adults after the bilateral removal of compound eyes. The incidence of diapause eggs in sham-operated crickets was not significantly different from that in intact crickets under both sets of photoperiodic conditions. These results show that P. nigrofasciatus perceives the photoperiod through its compound eyes.  相似文献   
7.
 To investigate the functions of GTP-binding protein(s) in the melanosome-aggregating response in fish melanophores, the effects of activators of G-proteins, namely, mastoparan and compound 48/80, were examined in cultured melanophores of the balck-moor goldfish, Carassius auratus. Both mastoparan and compound 48/80 induced an approximately 40% increase in the GTP-hydrolyzing activity in the melanophore membranes compared to the basal level. In intact melanophores, these compounds inhibited the effect of 3-isobutyl-1-methylxanthine, which induced the accumulation of intracellular cAMP. Pretreatment of melanophores with pertussis toxin at 1 μg ⋅ ml-1 for 15 h attenuated the inhibitory effect of mastoparan on the accumulation of cAMP. However, pretreatment with the toxin only slightly attenuated the inhibitory effect of compound 48/80 on the accumulation of cAMP. In addition, compound 48/80 at 1 mg ⋅ ml-1 induced full aggregation of the melanosomes in melanophores, though mastoparan at 5 μmol ⋅ l-1 induced only 10–20% aggregation of melanophores. These results suggest that mastoparan and compound 48/80 can each activate the inhibitory G-protein in goldfish melanophores, which results in inhibition of adenylate cyclase activity. This signal-transduction pathway is involved in the aggregation of melanosomes in these cells. Accepted: 3 June 1996  相似文献   
8.
酸水解蚕蛹制备复合氨基酸的研究   总被引:7,自引:0,他引:7  
采用硫酸水解法,以蚕蛹制取复合氨基酸产品,得到氨基酸态氮分别为9.05%和13.45%的食用复合氨基粉和精制复合氨基酸粉。食用复合氨基酸粉含有18种氨基酸,其中必需氨基酸含量为39.2%。食用复合氨基酸粉的制备方法经工厂小批量生产证实,其工艺简单易行,适合于中小企业采用,该产品的质量优良,生产成本低廉,具有市场竞争力。  相似文献   
9.
Summary In the noctuid moth Spodoptera exempta, the distribution of visual pigments within the fused rhabdoms of the compound eyes was investigated by electron microscopy. Each ommatidium regularly contains eight receptor cells belonging to three morphological types: one distal, six medial, and one basal cell (Meinecke 1981); four different visual pigments — absorption maxima at approximately 355, 465, 515, and 560 nm — are known to occur within the eye (Langer et al. 1979). The compound eyes were illuminated in situ by use of monochromatic light of different wavelengths. This illumination produced a wide scale of structural changes in the microvilli of the rhabdomeres of individual cells. Preparation of eyes by freeze-substitution revealed the structural changes in the rhabdomeres to be effects of light occurring in vivo.The degree of structural changes may be considerably different in rhabdomeres within the same ommatidium; it was found to depend on the wavelength and the duration of illumination, the intensity received by the ommatidia as well as the spectral sensitivity of the receptor cells. Therefore, it was possible to estimate the spectral sensitivities of the morphological types of receptor cells. Generally, all medial cells are green receptors and all basal cells red receptors; distal cells are blue receptors in about two-thirds of the ommatidia, while in the remaining third of them distal cells are sensitive to ultraviolet light.Supported by Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 114 (Bionach)  相似文献   
10.
Summary The structure of the campaniform sensilla of the cricket eye was investigated by light and electron microscopy. Each sensillum is innervated by a single bipolar neuron. Its axon extends through the retina into a side-branch of the nervus tegumentarius. The dendrite extends through a cuticular channel to the surface of the cornea. The distal part of the dendrite, the sensory process, contains a tubular body and is attached to a cuticular cap which is obliquely inserted into the exocuticle between the corneal lenslets. Some particular structural features as well as the function of the campaniform sensillum of the cricket eye are discussed.Supported by the Deutsche Forschungsgemeinschaft, grant Ho 463/10The authors are indebted to Prof. H. Altner, University of Regensburg, and Mrs. Evelyn Thury, Contron GmbH, München for use of the scanning electron microscope facilities  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号