首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   742篇
  免费   127篇
  国内免费   175篇
  1044篇
  2024年   9篇
  2023年   69篇
  2022年   108篇
  2021年   125篇
  2020年   132篇
  2019年   148篇
  2018年   123篇
  2017年   88篇
  2016年   71篇
  2015年   64篇
  2014年   32篇
  2013年   29篇
  2012年   8篇
  2011年   7篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1981年   2篇
排序方式: 共有1044条查询结果,搜索用时 15 毫秒
1.
2.
3.
近年来,CRISPR/Cas系统因其效率高、靶向性强、易操作等优势,已被广泛应用于多种病毒研究中。本文首先简单介绍了CRISPR/Cas系统的分类,并比较了Cas9和Cas12a与Cas13a的特点;其次重点介绍了CRISPR/Cas9通过靶向破坏病毒基因组,或编辑宿主关于病毒生命周期的关键因子的策略在抗病毒方面的各种应用,CRISPR/Cas13a采用靶向破坏病毒基因组方法在抗病毒中的应用,以及CRISPR/Cas12a和CRISPR/Cas13a在病毒基因检测中的应用。最后讨论了CRISPR/Cas在病毒研究中面临的挑战,并讨论了CRISPR/Cas12a作为抗病毒工具的潜在应用前景。由于CRISPR/Cas系统自身的优势,预计该系统将会给病毒相关的疾病诊断和控制带来革命性的变化。  相似文献   
4.
The virus-induced genome editing (VIGE) system aims to induce targeted mutations in seeds without requiring any tissue culture. Here, we show that tobacco rattle virus (TRV) harboring guide RNA (gRNA) edits germ cells in a wild tobacco, Nicotiana attenuata, that expresses Streptococcus pyogenes Cas9 (SpCas9). We first generated N. attenuata transgenic plants expressing SpCas9 under the control of 35S promoter and infected rosette leaves with TRV carrying gRNA. Gene-edited seeds were not found in the progeny of the infected N. attenuata. Next, the N. attenuata ribosomal protein S5 A (RPS5A) promoter fused to SpCas9 was employed to induce the heritable gene editing with TRV. The RPS5A promoter-driven SpCas9 successfully produced monoallelic mutations at three target genes in N. attenuata seeds with TRV-delivered guide RNA. These monoallelic mutations were found in 2%-6% seeds among M1 progenies. This editing method provides an alternative way to increase the heritable editing efficacy of VIGE.  相似文献   
5.
The CRISPR/Cas9 system has been used for genome editing in several organisms, including higher plants. This system induces site-specific mutations in the genome based on the nucleotide sequence of engineered guide RNAs. The complex genomes of C4 grasses makes genome editing a challenge in key grass crops like maize (Zea mays), sorghum (Sorghum bicolor), Brachiaria spp., switchgrass (Panicum virgatum), and sugarcane (Saccharum spp.). Setaria viridis is a diploid C4 grass widely used as a model for these C4 crop plants. Here, an optimized CRISPR/Cas9 binary vector that exploits the non-homologous end joining (NHEJ) system was used to knockout a green fluorescent protein (gfp) transgene in S. viridis accession A10.1. Transformation of embryogenic callus by A. tumefaciens generated ten glufosinate-ammonium resistant transgenic events. In the T0 generation, 60% of the events were biallelic mutants in the gfp transgene with no detectable accumulation of GFP protein and without insertions or deletions in predicted off-target sites. The gfp mutations generated by CRISPR/Cas9 were stable and displayed Mendelian segregation in the T1 generation. Altogether, the system described here is a highly efficient genome editing system for S. viridis, an important model plant for functional genomics studies in C4 grasses. Also, this system is a potential tool for improvement of agronomic traits in C4 crop plants with complex genomes.  相似文献   
6.

Background

CRISPR-Cas9 is a revolutionary genome editing technique that allows for efficient and directed alterations of the eukaryotic genome. This relatively new technology has already been used in a large number of ‘loss of function’ experiments in cultured cells. Despite its simplicity and efficiency, screening for mutated clones remains time-consuming, laborious and/or expensive.

Results

Here we report a high-throughput screening strategy that allows parallel screening of up to 96 clones, using next-generation sequencing. As a proof of principle, we used CRISPR-Cas9 to disrupt the coding sequence of the homeobox gene, Evx1 in mouse embryonic stem cells. We screened 67 CRISPR-Cas9 transfected clones simultaneously by next-generation sequencing on the Ion Torrent PGM. We were able to identify both homozygous and heterozygous Evx1 mutants, as well as mixed clones, which must be identified to maintain the integrity of subsequent experiments.

Conclusions

Our CRISPR-Cas9 screening strategy could be widely applied to screen for CRISPR-Cas9 mutants in a variety of contexts including the generation of mutant cell lines for in vitro research, the generation of transgenic organisms and for assessing the veracity of CRISPR-Cas9 homology directed repair. This technique is cost and time-effective, provides information on clonal heterogeneity and is adaptable for use on various sequencing platforms.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1002) contains supplementary material, which is available to authorized users.  相似文献   
7.
Genome edited animals can now be easily produced using the clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein 9 (Cas9) system. Traditionally, these animals have been produced by the introduction of endonucleases into pronuclear-stage embryos. Recently, a novel electroporation method, the “Technique for Animal Knockout system by Electroporation (TAKE),” has been established as a simple and highly efficient tool to introduce endonucleases into embryos instead of methods such as microinjection. Use of frozen-warmed pronuclear-stage embryos in this method has further contributed to efficient production of genome edited animals. However, early developmental stage embryos, including pronuclear-stage embryos, especially those of rats, sometimes show low resistance to physical damage by vitrification and introduction of endonucleases during microinjection. In this study, we propose an ethanol-free, slow-freezing method to reduce physical damage to pronuclear-stage embryos followed by the TAKE method. All mouse and rat frozen embryos were survived after electroporation, and 18% and 100% of offspring were edited target gene, respectively. The resulting protocol is an efficient method for producing genome edited animals.  相似文献   
8.
9.
为更好地研究靶向硫氧还蛋白还原酶1的小分子化合物的细胞内靶点选择性,利用CRISPR/Cas9系统构建稳定敲除TrxR1基因(编码硫氧还蛋白还原酶1)的HCT-116细胞株。首先根据TrxR1基因序列和CRISPR/Cas9靶点设计原则,设计并选择合适的敲除位点,再根据敲除位点序列设计敲除TrxR1基因的sgRNA干扰序列,以pCasCMV-Puro-U6空质粒载体为骨架构建能表达该sgRNA干扰序列的重组质粒。质粒共转染至HCT-116细胞后,利用嘌呤霉素筛选TrxR1敲除的HCT-116细胞,通过DNA测序、免疫蛋白印迹、TRFS-green荧光探针和细胞内TrxR1酶活力检测等方法鉴定和验证HCT-116细胞的TrxR1基因敲除效果。进一步通过CCK-8实验初步研究靶向TrxR1小分子化合物对细胞内TrxR1酶活力和细胞增殖力抑制的相关性。结果显示,表达sgRNA干扰序列的重组质粒可以敲除HCT-116细胞中TrxR1基因,筛选获得的稳定敲除细胞HCT116-TrxR1-KO中无TrxR1蛋白表达,而靶向TrxR1小分子抑制剂对该细胞无TrxR1酶活力和细胞增殖力抑制效果。本研究利用CRISPR/Cas9系统成功构建了HCT-116的TrxR1基因敲除的稳定细胞株,为进一步研究TrxR1在相关疾病的发生机制和治疗中的作用奠定了基础。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号