首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   18篇
  国内免费   5篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   14篇
  2019年   6篇
  2018年   5篇
  2017年   12篇
  2016年   15篇
  2015年   14篇
  2014年   12篇
  2013年   20篇
  2012年   13篇
  2011年   75篇
  2010年   13篇
  2009年   57篇
  2008年   21篇
  2007年   13篇
  2006年   10篇
  2005年   6篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1991年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有323条查询结果,搜索用时 608 毫秒
1.
Role of Thidiazuron (TDZ) in inducing adventitious organogenesis in Pongamia was studied. TDZ at different concentrations (0, 0.45, 2.27, 4.54, 6.71, 9.08, 11.35, 13.12 and 22.71 μM) were used for induction of caulogenic bud formation in deembryonated cotyledon explants. Each cotyledon was cut into three segments and identified as proximal, middle and distal. Duration of TDZ exposure, influence of the segment and orientation of the explant were studied. TDZ at 11.35 μM concentration was optimum for the induction of shoots and rapid elongation. Shoots induced at higher concentration elongated after several passages in growth regulator free medium, thereby extending the period of differentiation. Exposure of the explant for 20 days yielded more number of buds than 10 days. Proximal segment of the cotyledon was more responsive. Contact of abaxial surface in the medium was more effective and generated more buds than the adaxial side. Buds differentiated and elongated on transfer to MS basal medium for 8–12 passages of 15 days each. Rooting and elongation of shoots was achieved in charcoal supplemented half-strength MS medium. Rooted plantlets survived on transfer to sand soil mixture. The plants were hardened and transferred to green house. This is the first report on in vitro regeneration of Pongamia pinnata via adventitious organogenesis using TDZ. This protocol may find application in studies in genetic transformation, isolation of somaclonal variants and in induction of mutants. It also provides a system to study the inhibitory role of TDZ on shoot differentiation.  相似文献   
2.
To meet the increasing global demand of biodiesel over the next decades, alternative methods for producing one of the key constituents of biodiesel (e.g. fatty acid methyl esters (FAMEs)) are needed. Algal biodiesel has been a long-term target compromised by excessive costs for harvesting and processing. In this work, we engineered cyanobacteria to convert carbon dioxide into excreted FAME, without requiring methanol as a methyl donor. To produce FAME, acyl-ACP, a product of the fatty acid biosynthesis pathway, was first converted into free fatty acid (FFA) by a thioesterase, namely ’UcFatB1 from Umbellularia californica. Next, by employing a juvenile hormone acid O-methyltransferase (DmJHAMT) from Drosophila melanogaster and S-adenosylmethionine (SAM) as a methyl donor, FFAs were converted into corresponding FAMEs. The esters were naturally secreted extracellularly, allowing simple product separation by solvent overlay as opposed to conventional algae biodiesel production where the algae biomass must first be harvested and processed for transesterification of extracted triacylglycerols (TAGs). By optimizing both the promoter and RBS elements, up to 120 mg/L of FAMEs were produced in 10 days. Quantification of key proteins and metabolites, together with constructs over-expressing SAM synthetase (MetK), indicated that ’UcFatB1, MetK, and DmJHAMT were the main factors limiting pathway flux. In order to solve the latter limitation, two reconstructed ancestral sequences of DmJHAMT were also tried, resulting in strains showing a broader methyl ester chain-length profile in comparison to the native DmJHAMT. Altogether, this work demonstrates a promising pathway for direct sunlight-driven conversion of CO2 into excreted FAME.  相似文献   
3.
The conversion of soybean oil to biodiesel fuel was investigated in the presence of a lipase from Thermomyces lanuginosus (commercially called Lipozyme TL IM) in a solvent-free medium. The lipase was inactivated when more than 1.5 molar equivalent of methanol was added to the oil mixture. To fully convert the oil to its corresponding methyl esters, the reaction was performed successfully by a three-step addition of 1 molar equivalent of methanol and under the optimized conditions (40°C, 150 rpm, 10% enzyme quantity based on oil weight), the maximum methyl ester (ME) yield was 98% after 12 h reaction. By-product glycerol had a negative effect on enzymatic activity and iso-propanol was found to be effective for glycerol removal, in the presence of which lipase expressed relatively high activity and more than 94% of the ME yield was maintained after being used repeatedly for 15 batches.  相似文献   
4.
Crude glycerol is a primary by‐product in the biodiesel industry. Microbial fermentation on crude glycerol for producing value‐added products provides opportunities to utilize a large quantity of this by‐product. This study investigates the potential of using the crude glycerol to produce vancomycin (glycopeptide antibiotics) through fermentation of Amycolatopsis orientalis XMU‐VS01. The results show that crude glycerol was the most effective carbon source for mycelium growth and vancomycin production, with 40–60 g/L glycerol concentration as optimal range. Among other culture medium components, potato protein (nitrogen source) and the phosphate concentration had significant effects (p<0.05) for vancomycin production. A Box‐Behnken design and response surface methodology were employed to formulate the optimal medium. Their optimal values were determined as 52.73 g/L of glycerol, 17.36 g/L of potato protein, and 0.1 g/L of dipotassium phosphate. A highest vancomycin yield of 7.61 g/L with biomass concentration of 15.8 g/L was obtained after 120 h flask fermentation. The yield of vancomycin was 3.5 times higher than with basic medium. The results suggest that biodiesel‐derived crude glycerol is a promising feedstock for production of vancomycin from A. orientalis culture.  相似文献   
5.
6.
由于高效、稳定遗传转化系统的缺乏,小球藻遗传改良以及油脂代谢机理的研究等工作难以进行。研究旨在通过筛选获得小球藻Chlorella vulgaris细胞壁缺陷型突变体,在此基础上建立其转化系统。首先通过紫外诱变获得小球藻Chlorella vulgaris的突变体库,基于细胞壁缺陷型突变体在1% Triton X-100处理后叶绿素会释放到上清中的原理,利用酶标仪高通量地从约4000个突变体中筛选获得10株细胞壁缺陷的小球藻。同时以小球藻内源性-tubulin的启动子和终止子作为启动子和终止子,以AphⅧ (Aminoglycoside 3'-Phosphotransferase type Ⅷ)作为报告基因构建了转化载体pHK203。通过优化电转缓冲液组分和电击参数,确定了细胞壁缺陷型突变体CWD-3的最佳转化条件,即2 g pHK203,ddH2O作为电转缓冲液,1500 V,525 ,50 F的电击条件下,转化效率可达到40个转化子/g DNA。研究为小球藻Chlorella vulgaris的油脂代谢通路和遗传改良提供了技术基础,同时由于可降低破壁成本,筛选获得的细胞壁缺陷型突变体适于工业化生产小球藻藻粉。  相似文献   
7.
In the subwavelength regime, several nanophotonic configurations have been proposed to overcome the conventional light trapping or light absorption enhancement limit in solar cells also known as the Yablonovitch limit. It has been recently suggested that establishing such limit should rely on computational inverse electromagnetic design instead of the traditional approach combining intuition and a priori known physical effect. In the present work, by applying an inverse full wave vector electromagnetic computational approach, a 1D nanostructured optical cavity with a new resonance configuration is designed that provides an ultrabroadband (≈450 nm) light absorption enhancement when applied to a 107 nm thick active layer organic solar cell based on a low‐bandgap (1.32 eV) nonfullerene acceptor. It is demonstrated computationally and experimentally that the absorption enhancement provided by such a cavity surpasses the conventional limit resulting from an ergodic optical geometry by a 7% average over a 450 nm band and by more than 20% in the NIR. In such a cavity configuration the solar cells exhibit a maximum power conversion efficiency above 14%, corresponding to the highest ever measured for devices based on the specific nonfullerene acceptor used.  相似文献   
8.
Biodiesel is considered as a potential alternative energy source, but problem exists with the quantity and quality of feedstock used for it. To improve the feedstock quality of biodiesel, a field experiment was conducted under natural conditions. Cultivar Thori of kasumbha was used in the experiment. Commercialized biofertilizers were applied at the rate of 20 kg per acre and chemical fertilizer (diammonium phosphate) was applied as half dose (15 kg/ha). Results indicated that number of leaf plant−1, leaf area, number of seeds capitulum−1 was significantly increased by biofertilizer treatment alone (BF) and combine treatment of biofertilizer and chemical fertilizer (BFCF). Agronomic traits such as plant height, no. of branches of a plant, no. of capitulum/plant was improved significantly by BF treatment over the control. Maximum 1000 seed weight (41%) and seed yield (23%) were recorded in half dose of chemical fertilizers treatment (CFH). Seed oil content and seed phenolics were significantly improved by BF and CF treatments while maximum biodiesel yield was recorded by BF treatment. Maximum oleic acid was recorded by BF treatment while other fatty acids being maximum in control except linoleic acid in BFCF treatment. Results for specific gravity were non-significant while acid value and free fatty acid contents were substantially reduced by BF treatment as compared to other treatments. Maximum value of iodine number was recorded in BFCF treatment while tocopherol contents were improved by BF treatment. It is inferred that biofertilizer treatment alone perform better as compared to other treatments and 50% chemical fertilizer can be replaced using biofertilizer which is a good approach for sustainable environmental-friendly agriculture.Keyword: Green energy, Biofuel, Biodiesel, Kasumbha, Biofertilizers, Fatty acid, NMR  相似文献   
9.
13C cross-polarization/magic angle spinning (CP/MAS) NMR and (1)H T(1rho) experiments of poly(L-alanine) (PLA), poly(L-valine) (PLV), and PLA/PLV blends have been carried out in order to elucidate the conformational stability of the polypeptides in the solid state. These were prepared by adding a trifluoroacetic acid (TFA) solution of the polymer with a 2.0 wt/wt % of sulfuric acid (H(2)SO(4)) to alkaline water. From these experimental results, it is clarified that the conformations of PLA and PLV in their blends are strongly influenced by intermolecular hydrogen-bonding interactions that cause their miscibility at the molecular level.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号