首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1665篇
  免费   161篇
  国内免费   139篇
  2024年   9篇
  2023年   27篇
  2022年   21篇
  2021年   52篇
  2020年   67篇
  2019年   79篇
  2018年   64篇
  2017年   72篇
  2016年   68篇
  2015年   61篇
  2014年   73篇
  2013年   122篇
  2012年   49篇
  2011年   100篇
  2010年   36篇
  2009年   99篇
  2008年   106篇
  2007年   95篇
  2006年   71篇
  2005年   70篇
  2004年   64篇
  2003年   47篇
  2002年   66篇
  2001年   71篇
  2000年   53篇
  1999年   45篇
  1998年   38篇
  1997年   50篇
  1996年   21篇
  1995年   25篇
  1994年   34篇
  1993年   27篇
  1992年   15篇
  1991年   13篇
  1990年   12篇
  1989年   14篇
  1988年   1篇
  1987年   7篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1978年   4篇
  1977年   1篇
  1976年   2篇
  1958年   1篇
排序方式: 共有1965条查询结果,搜索用时 656 毫秒
1.
We undertook a 2-year (2002–2004) mark–recapture study to investigate demographic performance and habitat use of salt marsh harvest mice (Reithrodontomys raviventris halicoetes) in the Suisun Marsh. We examined the effects of different wetland types and microhabitats on 3 demographic variables: density, reproductive potential, and persistence. Our results indicate that microhabitats dominated by mixed vegetation or pickleweed (Salicornia spp.) supported similar salt marsh harvest mouse densities, reproductive potential, and persistence throughout much of the year, whereas few salt marsh harvest mice inhabited upland grass-dominated microhabitats. We found that densities were higher in diked wetlands, whereas post-winter persistence was higher in tidal wetlands, and reproductive potential did not differ statistically between wetland types. Our results emphasize the importance of mixed vegetation for providing adequate salt marsh harvest mouse habitat and suggest that, despite their physiognomic and hydrological differences, both diked and tidal wetlands support salt marsh harvest mouse populations by promoting different demographic attributes. We recommend that habitat management, restoration, and enhancement efforts include areas containing mixed vegetation in addition to pickleweed in both diked and tidal wetlands. © 2011 The Wildlife Society.  相似文献   
2.
Birth seasonally at high latitudes is a complex phenomenon which is undoubtedly affected by a subtle interaction between environmental rhythmicity (most notably in photoperiod and temperature) and cultural adaption. There is intriguing evidence that human gonadotrophic activity (and hence fertility) may be affected by seasonal fluctuations in light intensity and duration. Nevertheless, cultural factors are important insofar as they mediate between environmental rhythmicity and human fertility/birth patterns. This article examines the distribution of births over several decades in an Inuit community located 300 miles north of the Arctic Circle. Several shifts in birth seasonality are noted, the most significant of which is a dramatic shift from pronounced seasonality in the 1970s to non-seasonality in the 1980s. Longitudinal ethnographic fieldwork has allowed an examination of social and economic changes accounting for the rather sudden disappearance of birth seasonality. These include increasing reliance upon wage employment and social assistance, decreased dependence upon subsistence hunting and trapping, changing attitudes on the part of young people entering their prime reproductive years, and the introduction of television, radio, and southern-style recreational activities.  相似文献   
3.
4.
5.
Summer habitat use by sympatric Arctic charr Salvelinus alpinus, young Atlantic salmon Salmo salar and brown trout Salmo trutta was studied by two methods, direct underwater observation and electrofishing, across a range of habitats in two sub-arctic rivers. More Arctic charr and fewer Atlantic salmon parr were observed by electrofishing in comparison to direct underwater observation, perhaps suggesting a more cryptic behaviour by Arctic charr. The three species segregated in habitat use. Arctic charr, as found by direct underwater observation, most frequently used slow (mean ±s .d . water velocity 7·2 ± 16·6 cm s−1) or often stillwater and deep habitats (mean ±s .d . depth 170·1 ± 72·1 cm). The most frequently used mesohabitat type was a pool. Young Atlantic salmon favoured the faster flowing areas (mean ±s .d . water velocity 44·0 ± 16·8 cm s−1 and depth 57·1 ± 19·0 cm), while brown trout occupied intermediate habitats (mean ±s .d . water velocity 33·1 ± 18·6 cm s−1 and depth 50·2 ± 18·0 cm). Niche overlap was considerable. The Arctic charr observed were on average larger (total length) than Atlantic salmon and brown trout (mean ±s .d . 21·9 ± 8·0, 10·2 ± 3·1 and 13·4 ± 4·5 cm). Similar habitat segregation between Atlantic salmon and brown trout was found by electrofishing, but more fishes were observed in shallower habitats. Electrofishing suggested that Arctic charr occupied habitats similar to brown trout. These results, however, are biased because electrofishing was inefficient in the slow-deep habitat favoured by Arctic charr. Habitat use changed between day and night in a similar way for all three species. At night, fishes held positions closer to the bottom than in the day and were more often observed in shallower stream areas mostly with lower water velocities and finer substrata. The observed habitat segregation is probably the result of interference competition, but the influence of innate selective differences needs more study.  相似文献   
6.
Control of plant growth by nitrogen and phosphorus in mesotrophic fens   总被引:7,自引:0,他引:7  
A fertilization experiment was carried out in 3 mesotrophic fens to investigate whether plant growth in these systems is controlled by the availability of N, P or K. The fens are located in an area with high N inputs from precipitation. They are annually mown in the summer to prevent succession to woodland. Above-ground plant biomass increased significantly upon N fertilization in the two mid-succession fens studied. In the late-succession fen that had been mown for at least 60 years, however, plant biomass increased significantly upon P fertilization. The mowing regime depletes the P pool in the soil, while it keeps N inputs and outputs in balance. A long-term shift occurs from limitation of plant production by N toward limitation by P. Hence, mowing is a suitable management tool to conserve the mesothrophic character of the fens.  相似文献   
7.
We analyzed data from Section 404 permits issued in California from January 1971 through November 1987 that involved impacts to wetlands and required compensatory mitigation (wetland creation, restoration, or preservation). The purpose of this study was to determine patterns and trends in permitting activity and to document cumulative effects of associated management decisions on the California wetland resource. The 324 permits examined documented that 387 compensatory wetlands (1255.9 ha) were required as mitigation for impacts to 368 wetlands (1176.3 ha). The utility of the data on wetland area was limited, however, since 38.0% of the impacted wetlands and 41.6% of the compensatory wetlands lacked acreage data. The wetland type most frequently impacted (37.8% of impacted wetlands) and used in compensation (38.2% of compensatory wetlands) was palustrine forested wetlands. Estuarine intertidal emergent wetlands had the most area impacted (52.3%) and compensated (62.5%). The majority of the wetlands were small (less than or equal to 4.0 ha in size). Wildlife habitat was the most frequently listed function of impacted wetlands (90.7% of the permits) and objective of compensatory wetlands (83.3%). Endangered species were listed as affected in 20.4% of impacted and 21.0% of compensatory projects. The number of permits requiring compensatory mitigation and the number of impacted and compensatory wetlands increased from 1971 to 1986.Documentation of the details of Section 404 permit decisions was inadequate for the permits we examined. Area information and specific locations of impacted and compensatory wetlands were lacking or of poor quality. Follow-up information was also inadequate. For example, project completion dates were specified in the permit for only 2.2% of compensatory wetlands. Furthermore, less than one-third (31.5%) of the permits required the compensatory wetland to be monitored by at least one site visit. We recommend improved documentation, regular reporting, and increased monitoring for better evaluation of the Section 404 permitting system.  相似文献   
8.
An early successional wetland complex on a reclaimed surface coal mine in southern Illinois was studied 1985–1987. Seasonally, biomass was low, with above-ground values of 10–210g m–2 and below-ground biomass of 1.5–2435 g m–2. Biomass peaked in spring and did not vary much throughout the remainder of the growing season. Stem densities were high (179–1467 m–2) because large numbers of seedlings became established as falling water levels exposed large areas of mudflats. Fluctuating water levels led to a lack of community zonation. Species diversity (H) was low to moderate over all sites with diversity values ranging between 1.86 and 3.27.  相似文献   
9.
At Big Run Bog, aSphagnum-dominated peatland in the unglaciated Appalachian Plateau of West Virginia, significant spatial variation in the physical and chemical properties of the peat and in surface and subsurface (30 cm deep) water chemistry was characterized. The top 40 cm of organic peat at Big Run Bog had average values for bulk density of 0.09 g · cm–3, organic matter concentration of 77%, and volumetric water content of 88%. Changes in physical and chemical properties within the peat column as a function of depth contributed to different patterns of seasonal variation in the chemistry of surface and subsurface waters. Seasonal variation in water chemistry was related to temporal changes in plant uptake, organic matter decomposition and element mineralization, and to varying redox conditions associated with fluctuating water table levels. On the average, total Ca, Mg, and N concentrations in Big Run Bog peat were 33, 15, and 1050 mol · g–1, respectively; exchangeable Ca and Mg concentrations were 45 and 14 eq · g–1 , respectively. Surface water pH averaged 4.0 and Ca++ concentrations were less than 50 eq · L–1 . These chemical variables have all been used to distinguish bogs from fens. Physiographically, Big Run Bog is a minerotrophic fen because it receives inputs of water from the surrounding forested upland areas of its watershed. However, chemically, Big Run Bog is more similar to true ombrotrophic bogs than to minerotrophic fens.  相似文献   
10.
Summary Mutagenesis provoked by exposure at elevated temperature of the cold-adapted, arctic Rhizobium strain N31 resulted in the generation of five deletion mutants, which exhibited loss of their smaller plasmid (200 kb), whereas the larger plasmid (> 500 kb) was still present in all mutants. Deletion mutants did not show differences from the wild type in the antibiotic resistance pattern, the carbohydrates and organic acids utilization, and the growth rate at low temperature. However, deletion mutants differed from the wild type and among themselves in the ex planta nitrogenase activity, the nodulation index, and the symbiotic effectiveness. The deletion mutant N31.6rif r showed higher nodulation index and exhibited higher nitrogenase activity and symbiotic efficiency than the other deletion mutants and the wild type. The process of deletion mutation resulted in the improvement of an arctic Rhizobium strain having an earlier and higher symbiotic nitrogen fixation efficiency than the wild type.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号