首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2008年   1篇
  2001年   1篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
Parathion (PS) and chlorpyrifos (CPF) are organophosphorus insecticides, which elicit toxicity following biotransformation to the potent acetylcholinesterase inhibitors, paraoxon (PO) and chlorpyrifos oxon (CPO). Both oxons have also been shown to interact directly with muscarinic receptors coupled to inhibition of adenylyl cyclase. Immature animals are more sensitive than adults to the acute toxicity of PS and CPF but little is known regarding possible age-related differences in interactions between these toxicants and muscarinic receptors. We compared the inhibition of forskolin-stimulated cAMP formation by PO and CPO (1 nM-1 mM) in vitro in brain slices from 7-, 21-, and 90-day-old rats to the effects of well-known muscarinic agonists, carbachol and oxotremorine (100 microM). Both agonists inhibited cAMP formation in tissues from all age groups and both were more effective in adult and juvenile (20-26% inhibition) than in neonatal (12-13% inhibition) tissues. Atropine (10 microM) completely blocked agonist-induced inhibition in all cases. PO maximally inhibited (37-46%) cAMP formation similarly in tissues from all age groups, but atropine blocked those effects only partially and only in tissues from 7-day-old rats. CPO similarly inhibited cAMP formation across age groups (27-38%), but ATR was partially effective in tissues from all three age groups. Both oxons were markedly more potent in tissues from younger animals. We conclude that PO and CPO can directly inhibit cAMP formation through muscarinic receptor-dependent and independent mechanisms and that the developing nervous system may be more sensitive to these noncholinesterase actions.  相似文献   
2.
Our goal was to design, synthesize, and evaluate new cholinesterase inhibitors. Fourteen dehydroamino acids esterified to choline and to its ternary analog were synthesized by a new method that gave a yield of 84-93%. The potency of the amino acid ester derivatives was tested by measuring K(i) values for inhibition of human red cell acetylcholinesterase and human plasma butyrylcholinesterase. The most potent compound was a choline ester of dehydrophenylalanine where the amine group of the amino acid was derivatized with a benzoyl group containing a methoxy in the 2-position, CH(3)O(C(6)H(4))CONHC(CHC(6)H(5))COOCH(2)CH(2)N(+)(CH(3))(3). This compound was a strong inhibitor of both human acetylcholinesterase and human butyrylcholinesterase, with K(i) values of 10 microM and 0.08 microM, respectively. These K(i) values are comparable to that of Rivastigmine. Docking of the most potent compound into the active site of human butyrylcholinesterase showed that the lowest energy model had two benzene rings oriented towards Trp 82 and Tyr 332 whereas the positively charged nitrogen group was stabilized by Trp 231. This orientation placed the ester group 3.89 A from the active site Ser 198, a distance too far for covalent bonding, explaining why the esters are inhibitors rather than substrates. This class of anticholinesterase agents has the potential for therapeutic utility in the treatment of disorders of the cholinergic system.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号