首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   351篇
  免费   19篇
  国内免费   10篇
  380篇
  2024年   2篇
  2023年   3篇
  2022年   2篇
  2021年   8篇
  2020年   9篇
  2019年   10篇
  2018年   15篇
  2017年   13篇
  2016年   15篇
  2015年   14篇
  2014年   31篇
  2013年   40篇
  2012年   11篇
  2011年   14篇
  2010年   10篇
  2009年   17篇
  2008年   24篇
  2007年   12篇
  2006年   7篇
  2005年   9篇
  2004年   8篇
  2003年   10篇
  2002年   12篇
  2001年   7篇
  2000年   8篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   7篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1984年   5篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1979年   2篇
  1978年   1篇
  1972年   1篇
  1966年   1篇
排序方式: 共有380条查询结果,搜索用时 15 毫秒
1.
We respond to a reaction of the Global Footprint Network/GFN on our 8-point criticism of the ecological footprint. We also refer to, and comment on, an associated debate in this journal between Giampietro and Saltelli, 2014a, Giampietro and Saltelli, 2014b, on the one hand, and Goldfinger et al. (2014), on the other. We conclude that criticism on the footprint is accumulating and coherent across the various studies and disciplines and among the different authors. This was the first time that Wackernagel/GFN systematically responded to our criticisms. Hence, our response contains several original elements and the resulting exchange can be seen to add value to the existing literature. It ultimately allows readers to better make up their mind about the different viewpoints on the ecological footprint.  相似文献   
2.
Semicontinuously grown wild carrot ( Daucus carota L.) cells were used in an investigation of the effect of culture medium pH on ammonium uptake in suspension cultures as a first step in exploring the relationship between pH and anthocyanin biosynthesis. In contrast to published data showing decreasing uptake rates with decreasing culture medium pH, ammonium-limited, semicontinuous carrot cell cultures showed a 25% greater ammonium uptake rate at pH 4.5 than at pH 5.5. When cells that had been grown semicontinuously in medium with a pH of 4.5 or 5.5 were grown in batch cultures at pH 4.5, 5.5 or 6.5 the ammonium uptake rates were those of the semicontinuous cultures, indicating that the pH of the batch culture medium had no effect on ammonium uptake rates over 7 days. The cell culture was composed of very small aggregates when it was grown semicontinuously in medium at pH 4.5, but was composed of large aggregates when it was grown semicontinuously in medium at pH 5.5. The aggregation/disaggregation of the cells was pH dependent, as changing the pH of the semicontinuous culture medium altered the extent of the aggregation. We conclude that the change in culture medium pH caused the cells to aggregate or disaggregate which in turn decreased or increased the rate of ammonium uptake from the medium.  相似文献   
3.
The effect of cell immobilization and continuous culture was studied on selected physiological and technological characteristics of Bifidobacterium longum NCC2705 cultivated for 20 days in a two stage continuous fermentation system. Continuous immobilized cell (IC) cultures with and without glucose limitation exhibited formation of macroscopic cell aggregates after 12 and 9 days, respectively. Auto-aggregation resulted in underestimation of viable cell counts by plate counts by more than 2 log units CFU/ml compared with qPCR method. Modifications of cell membrane composition might partially explain aggregate formation in IC cultures. Decreases in the ratio of unsaturated to saturated fatty acid content from 1.74 to 0.58 might also contribute to the enhanced tolerance of IC cells to porcine bile salts and aminoglycosidic antibiotics compared with free cells from batch cultures.The enhanced resistance against bile salts in combination with auto-aggregation may confer an advantage to probiotic bacteria produced by IC technology.  相似文献   
4.
The responses to water stress of the bulk modulus of elasticity () and the apoplastic water fraction were examined using six sunflower cultivars of differing capacity for osmotic adjustment (OA). Water stress did not affect the partitioning of water between apoplastic (ca. 20%) and symplastic fractions in leaves which expanded during the exposure to stress in any genotype. Hence, no genotype-linked effects on either the buffering of cell water status during stress or on the estimates of bulk leaf osmotic potential could be expected. Genotypes differed in the degree of change in (estimated from pressure/volume [P/V] curves) and OA (estimated using both ln RWC/ ln o plots and P/V curves) induced by exposure to stress. In three genotypes increased significantly (p=0.05) as a consequence of stress, in another three change were small. OA was the only attribute of the three examined that could have contributed to turgor maintenance under stress. There was a strong negative association between leaf expansion and degree of OA across genotypes (r=–0.91) and a strong positive one between OA and (r=0.94). However all genotypes evidenced some degree of OA. These results are consistent with part of the genotype differences in OA being attributable to variations in leaf expansion during exposure to stress.  相似文献   
5.
6.
The development of bone tissue engineering depends on the availability of suitable biomaterials, a well‐defined and controlled bioreactor system, and on the use of adequate cells. The biomaterial must fulfill chemical, biological, and mechanical requirements. Besides biocompatibility, the structural and flow characteristics of the biomaterial are of utmost importance for a successful dynamic cultivation of osteoblasts, since fluid percolation within the microstructure must be assured to supply to cells nutrients and waste removal. Therefore, the biomaterial must consist of a three‐dimensional structure, exhibit high porosity and present an interconnected porous network. Sponceram®, a ZrO2 based porous ceramic, is characterized in the presented work with regard to its microstructural design. Intrinsic permeability is obtained through a standard Darcy's experiment, while Young's modulus is derived from a two plates stress–strain test in the linear range. Furthermore, the material is applied for the dynamic cultivation of primary osteoblasts in a newly developed rotating bed bioreactor. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   
7.
The mixed Langmuir monolayers composed of model constituents of biological membranes, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC), and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), were investigated to provide information on the intermolecular interactions between these membrane components and the physiologically active vitamin E–α-tocopherol (TF), as well as on the phase behavior of these mixed systems. Additionally, topography of these monolayers transferred onto the mica support was investigated by the inverted metallurgical microscope. Morphological characteristics were directly observed by Brewster angle microscopy (BAM). From the surface pressure–area isotherms and the analysis of physicochemical parameters (compressibility and mean molecular area at the maximum compressibility) it was found that depending on the acyl chains saturation degree, TF has different effect on the phospholipids. In the case of DPPC, the addition of TF to the phospholipid film causes destabilization of the ordered hydrocarbon chains, while in the POPC/DOPC–TF systems, the attractive interactions are responsible for the monolayer increased stability. Thus, the results of these studies confirm the hypothesis that α-tocopherol may play a role in the stabilization of biological membranes.  相似文献   
8.
To quantify the spatial distribution of ammonia-oxidizing bacteria (AOB) and archaea (AOA) and to determine nitrification activity in soil aggregates along a landscape, soil samples were collected from three landscape positions (shoulder, backslope, and toeslope) at two pasture sites with contrasting climatic conditions. The abundance of AOB and AOA was estimated by quantifying their respective bacterial and archaeal amoA gene copies using real-time polymerase chain reaction. Soil organic C (SOC), total N (TN), and the potential nitrification rate (PNR) were measured in aggregate size ranges (4–1, 1–0.25, and 0.25–0.05 mm). At site 1, a decreasing trend in PNR was observed as the size of aggregates decreased. Both bacterial and archaeal amoA genes were higher in the macroaggregates (4–1 and 1–0.25 mm) than in the microaggregates (0.25–0.05 mm) along the landscape. At site 2, PNR was higher in the smallest size of aggregates. In the 0.25–0.05-mm fraction, the abundance of bacterial and archaeal amoA genes was equal to, or greater than, those found in larger aggregate sizes. The relative abundance of archaeal amoA gene and the PNR correlated with relative SOC and TN contents along the landscapes. The positive relationship between relative archaeal amoA gene abundance and PNR suggests that nitrification in the studied pastures is probably driven by ammonia-oxidizing Thaumarchaeota.  相似文献   
9.
The budding of membranes and curvature generation is common to many forms of trafficking in cells. Clathrin-mediated endocytosis, as a prototypical example of trafficking, has been studied in great detail using a variety of experimental systems and methods. Recently, advances in experimental methods have led to great strides in insights on the molecular mechanisms and the spatiotemporal dynamics of the protein machinery associated with membrane curvature generation. These advances have been ably supported by computational models, which have given us insights into the underlying mechanical principles of clathrin-mediated endocytosis. On the other hand, targeted experimental perturbation of membranes has lagged behind that of proteins in cells. In this area, modeling is especially critical to interpret experimental measurements in a mechanistic context. Here, we discuss the contributions made by these models to our understanding of endocytosis and identify opportunities to strengthen the connections between models and experiments.  相似文献   
10.
目的:探讨不同含湿率及加载条件对人皮质骨纳米压痕测试的影响。方法:采用美国Hysitron纳米压痕仪,设定不同加载模式(高峰载荷分别为300、400、500 nm;加载速度分别为6、8、10 nm/s)对不同含湿率(20‰、30‰、40‰、50‰、60‰)人皮质骨进行弹性模量及硬度测量。结果:在同一加载模式下,不同含湿率标本的测试值随着含湿率增高,弹性模量及硬度值均显著降低(P0.01);三种不同加载模式对含湿率为20‰标本测试值无明显变化;对含湿率60‰标本测试值有显著性影响(P0.02)。结论:纳米压痕仪测试骨微观力学特性时,测试值不仅受标本本身含湿率的影响,当测试条件改变,对湿润标本测试结果也完全不同。当使用纳米压痕技术时,通常采用脱水包埋处理的标本测试出的机械性能,对我们在微观层面认识人体骨在湿润的生理环境下的机械性能是不够全面的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号