首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4137篇
  免费   367篇
  国内免费   1806篇
  2024年   26篇
  2023年   127篇
  2022年   199篇
  2021年   224篇
  2020年   242篇
  2019年   232篇
  2018年   317篇
  2017年   269篇
  2016年   308篇
  2015年   381篇
  2014年   509篇
  2013年   489篇
  2012年   511篇
  2011年   446篇
  2010年   347篇
  2009年   326篇
  2008年   192篇
  2007年   202篇
  2006年   260篇
  2005年   142篇
  2004年   69篇
  2003年   60篇
  2002年   42篇
  2001年   36篇
  2000年   30篇
  1999年   28篇
  1998年   25篇
  1997年   28篇
  1996年   20篇
  1995年   20篇
  1994年   21篇
  1993年   25篇
  1992年   25篇
  1991年   26篇
  1990年   18篇
  1989年   11篇
  1988年   27篇
  1987年   31篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   6篇
  1958年   1篇
  1950年   3篇
排序方式: 共有6310条查询结果,搜索用时 46 毫秒
111.

Background

Genetic polymorphism of human 8-oxoguanine glycosylase 1 (hOGG1) Ser326Cys (rs1052133) has been implicated in the risk of Esophageal Squamous Cell Carcinoma (ESCC). However, the published findings are inconsistent. We therefore performed a meta-analysis to derive a more precise estimation of the association between the hOGG1 Ser326Cys polymorphism and ESCC risk.

Methodology/Principal Findings

A comprehensive search was conducted to identify eligible studies of hOGG1 Ser326Cys polymorphism and the risk of the ESCC. Three English and two Chinese databases were used, and ten published case-control studies, including 1987 cases and 2926 controls were identified. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of the association in the dominant and recessive model. Pearson correlation coefficient (PCC) and standard error (SE) were used to assess the number of Cys allele and ESCC risk in the additive model. Overall, significant associations between the hOGG1 Ser326Cys polymorphism and ESCC risk were found in the recessive model: OR = 1.37 (95% CI: 1.06–1.76, p = 0.02). We also observed significant associations in the Caucasian, Chinese language, population based control and tissue subgroups. In the additive model, positive correlation was found between the number of Cys allele and the risk of ESCC in overall studies (PCC = 0.109, SE = 0.046, p = 0.02), Caucasian subgroup and population subgroup. Funnel plot and Egger''s test indicate there was no publication bias in this meta-analysis.

Conclusion

Under the published data, the hOGG1 Ser326Cys polymorphism is associated with ESCC risk in the recessive and additive model. Compared with the Ser/Ser and Ser/Cys genotype, Cys/Cys genotype might contribute to increased risk of ESCC. And the risk of ESCC is positively correlated with the number of Cys allele. A better case-control matched study should be designed in order to provide a more precise estimation.  相似文献   
112.
Drought resistance and recovery ability are two important requisites for plant adaptation to drought environments. Proline (Pro) metabolism has been a major concern in plant drought tolerance. However, roles of Pro metabolism in plant recovery ability from severe drought stress are largely unexplored. Periploca sepium Bunge has gained increasing attention for its adaptation to dry environments. Here, we investigated Pro metabolism in different tissues of P. sepium seedlings in the course of drought stress and recovery. We found that leaf Pro metabolism response during post-drought recovery was dependant on drought severity. Pro biosynthesis was down-regulated during recovery from -0.4 MPa but increased continually and notably during recovery from -1.0 MPa. Significant correlation between Pro concentration and Δ1-pyrroline-5-carboxylate synthetase activity indicates that Glutamate pathway is the predominant synthesis route during both drought and re-watering periods. Ornithine δ-aminotransferase activity was up-regulated significantly only during recovery from −1.0 MPa, suggesting positive contribution of ornithine pathway to improving plant recovery capacity from severe drought. In addition to up-regulation of biosynthesis, Pro transport from stems and roots also contributed to high Pro accumulation in leaves and new buds during recovery from −1.0 MPa, as indicated by the combined analysis of Pro concentration and its biosynthesis in stems, roots and new buds. Except its known roles as energy, carbon and nitrogen sources for plant rapid recovery, significant positive correlation between Pro concentration and total antioxidant activity indicates that Pro accumulation can also promote plant damage repair ability by up-regulating antioxidant activity during recovery from severe drought stress.  相似文献   
113.
Two mutations have been found in five closely related insect esterases (from four higher Diptera and a hymenopteran) which each confer organophosphate (OP) hydrolase activity on the enzyme and OP resistance on the insect. One mutation converts a Glycine to an Aspartate, and the other converts a Tryptophan to a Leucine in the enzymes’ active site. One of the dipteran enzymes with the Leucine mutation also shows enhanced activity against pyrethroids. Introduction of the two mutations in vitro into eight esterases from six other widely separated insect groups has also been reported to increase substantially the OP hydrolase activity of most of them. These data suggest that the two mutations could contribute to OP, and possibly pyrethroid, resistance in a variety of insects. We therefore introduced them in vitro into eight Helicoverpa armigera esterases from a clade that has already been implicated in OP and pyrethroid resistance. We found that they do not generally enhance either OP or pyrethroid hydrolysis in these esterases but the Aspartate mutation did increase OP hydrolysis in one enzyme by about 14 fold and the Leucine mutation caused a 4–6 fold increase in activity (more in one case) of another three against some of the most insecticidal isomers of fenvalerate and cypermethrin. The Aspartate enzyme and one of the Leucine enzymes occur in regions of the H. armigera esterase isozyme profile that have been previously implicated in OP and pyrethroid resistance, respectively.  相似文献   
114.
Hangingflies are unique for the male providing a nuptial gift to the female during mating and taking a face-to-face hanging copulation with the female. Their male genitalia are peculiar for an extremely elongated penisfilum, a pair of well-developed epandrial lobes (9th tergum), and a pair of degenerated gonostyli. However, the co-evolution of their face-to-face copulation behavior and the male genitalia has rarely been studied hitherto. In this paper the mating behavior of the hangingfly Bittacus planus Cheng, 1949 was observed under laboratory conditions, and the morphology of the male and female external genitalia was investigated using light and scanning electron microscopy. The male provides an insect prey as a nuptial gift to the female in courtship and mating process, and commits a face-to-face copulation. During copulation, the male abdomen twists temporarily about 180° to accommodate their face-to-face mating position. The aedeagal complex has an extremely elongated penisfilum, corresponding to the elongated spermathecal duct of the female. The well-developed epandrial lobes serve as claspers to grasp the female subgenital plate during copulation, replacing the function of gonostyli, which are greatly reduced in Bittacidae. The modified proctiger assists the penisfilum to stretch and to enter into the female spermathecal duct. The possible reasons why this species might mate face-to-face are briefly discussed.  相似文献   
115.
The revegetation of abandoned farmland significantly influences soil organic C (SOC) and total N (TN). However, the dynamics of both soil OC and N storage following the abandonment of farmland are not well understood. To learn more about soil C and N storages dynamics 30 years after the conversion of farmland to grassland, we measured SOC and TN content in paired grassland and farmland sites in the Zhifanggou watershed on the Loess Plateau, China. The grassland sites were established on farmland abandoned for 1, 7, 13, 20, and 30 years. Top soil OC and TN were higher in older grassland, especially in the 0–5 cm soil depths; deeper soil OC and TN was lower in younger grasslands (<20 yr), and higher in older grasslands (30 yr). Soil OC and N storage (0–100 cm) was significantly lower in the younger grasslands (<20 yr), had increased in the older grasslands (30 yr), and at 30 years SOC had increased to pre-abandonment levels. For a thirty year period following abandonment the soil C/N value remained at 10. Our results indicate that soil C and TN were significantly and positively correlated, indicating that studies on the storage of soil OC and TN needs to focus on deeper soil and not be restricted to the uppermost (0–30 cm) soil levels.  相似文献   
116.
A large amount of soil loss is caused by a small number of extreme events that are mainly responsible for the time compression of geomorphic processes. The aim of this study was to analyze suspended sediment transport during extreme erosion events in a mountainous watershed. Field measurements were conducted in Wangjiaqiao, a small agricultural watershed (16.7 km2) in the Three Gorges Area (TGA) of China. Continuous records were used to analyze suspended sediment transport regimes and assess the sediment loads of 205 rainfall–runoff events during a period of 16 hydrological years (1989–2004). Extreme events were defined as the largest events, ranked in order of their absolute magnitude (representing the 95th percentile). Ten extreme erosion events from 205 erosion events, representing 83.8% of the total suspended sediment load, were selected for study. The results of canonical discriminant analysis indicated that extreme erosion events are characterized by high maximum flood-suspended sediment concentrations, high runoff coefficients, and high flood peak discharge, which could possibly be explained by the transport of deposited sediment within the stream bed during previous events or bank collapses.  相似文献   
117.
Gu  Chaojun  Mu  Xingmin  Gao  Peng  Zhao  Guangju  Sun  Wenyi  Tan  Xuejin 《Plant and Soil》2020,447(1-2):393-412
Aims

Since the 1970s, extensive croplands were converted to forest and pasture lands to control severe soil erosion on the Loess Plateau of China. We quantify the direct and indirect effects of vegetation restoration on runoff and sediment yield on hillslopes in the field to improve environmental governance.

Methods

An artificial rainfall experiment at a rainfall intensity of 120 mm h−1 and a slope gradient of 22° were used to distinguish the effects of vegetation restoration on runoff and sediment yield.

Results

Compared to the farmland slopes, vegetation restoration directly prolonged the time-to-runoff by 140%, reduced the runoff rate by 20%, and increased the soil infiltration capacity by 15%. Vegetation restoration indirectly delayed the time-to-runoff by 120%, reduced the runoff rate and sediment yield rate by 50% and 94%, respectively, and increased the soil infiltration capacity by 58% on the hillslopes with vegetation restoration.

Conclusions

The direct effects of vegetation restoration on runoff and sediment yield were lower than its indirect impacts. Vegetation cover, decreases in soil bulk density, and increases in belowground root biomasses and > 0.25 mm aggregate stability were the primary causes of runoff and sediment yield reduction on the slopes with vegetation restoration.

  相似文献   
118.
Relationships between xylem anatomical traits and cavitation resistance have always been a major content of plant hydraulics. To know how plants cope with drought, it is extremely important to acquire detailed knowledge about xylem anatomical traits and assess the cavitation resistance accurately. This study aims to increase our knowledge in the methods determining cavitation resistance and xylem anatomical traits. We selected a semi-ring-porous species, Hippophae rhamnoides L., and a diffuse-porous species, Corylus heterophylla F., to clarify the reasons for the difference in cavitation resistance based on detailed xylem anatomical traits and reliable vulnerability curves (VCs). Both Cavitron and bench dehydration (BD) were used to construct VCs. Xylem anatomical traits, including pit membrane ultrastructure of these two species, were determined. The VCs obtained by the two different techniques were of different types for H. rhamnoides, its Cavitron VCs might be unreliable because of open-vessel artifacts. On the basis of BD VCs, H. rhamnoides showed higher cavitation resistance than C. heterophylla, and this is attributed to its low vessel connectivity as well as non-porous and thicker pit membranes.  相似文献   
119.

Snapdragon (Antirrhinum majus L.) is a popular ornamental and model plant species, and the recently released reference genome could greatly boost its utilization in fundamental research. However, the lack of an efficient genetic transformation system is still a major limiting factor for its full application in genetic and molecular studies. In this study, a simple method for quick regeneration and efficient Agrobacterium-mediated transformation of snapdragon was developed. Cotyledon petiole and hypocotyl explants derived from two-week-old seedlings were cultured on MS media supplemented with 2 mg/L zeatin (ZT), 0.2 mg/L 1-naphthaleneacetic acid (NAA), and 2 mg/L AgNO3, and adventitious shoots were regenerated through organogenesis with an average regeneration of 48.00% and 41.33%, respectively. By contrast, the regeneration frequency was only 22.67% for cotyledon petiole and 25.67% for hypocotyl explants in the absence of AgNO3. Moreover, the application of AgNO3 promoted indirect shoot organogenesis, while direct shoot organogenesis occurred in the absence of AgNO3 from both hypocotyl or cotyledon petiole explants. Agrobacterium-mediated genetic transformation systems were developed with this high-efficient regeneration system. The transformation efficiency has been improved from 0 to 1% through the direct shoot organogenesis to 3 to 4% via the indirect shoot organogenesis. This efficient regeneration and genetic transformation method could be important for future use of snapdragon as a model plant to address some fundamental questions which are hard to be solved by using other model plant species, and to accelerate the breeding process through CRISPR/Cas9 genome editing.

  相似文献   
120.
Plant Cell, Tissue and Organ Culture (PCTOC) - Tanshinones are major secondary metabolites in Salvia miltiorrhiza Bunge, the traditional Chinese medicinal plant Danshen. Increasing the production...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号