首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7984篇
  免费   623篇
  国内免费   1809篇
  10416篇
  2024年   59篇
  2023年   296篇
  2022年   475篇
  2021年   479篇
  2020年   429篇
  2019年   456篇
  2018年   408篇
  2017年   369篇
  2016年   384篇
  2015年   429篇
  2014年   636篇
  2013年   573篇
  2012年   759篇
  2011年   850篇
  2010年   564篇
  2009年   462篇
  2008年   348篇
  2007年   547篇
  2006年   363篇
  2005年   242篇
  2004年   124篇
  2003年   101篇
  2002年   86篇
  2001年   94篇
  2000年   68篇
  1999年   51篇
  1998年   50篇
  1997年   45篇
  1996年   58篇
  1995年   40篇
  1994年   41篇
  1993年   37篇
  1992年   23篇
  1991年   32篇
  1990年   48篇
  1989年   33篇
  1988年   46篇
  1987年   93篇
  1986年   101篇
  1985年   14篇
  1984年   12篇
  1983年   14篇
  1982年   14篇
  1981年   18篇
  1980年   14篇
  1979年   12篇
  1978年   6篇
  1977年   6篇
  1976年   6篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
Cholesterol is essential in establishing most functional animal cell membranes; cells cannot grow or proliferate in the absence of sufficient cholesterol. Consequently, almost every cell, tissue, and animal tightly regulates cholesterol homeostasis, including complex mechanisms of synthesis, transport, uptake, and disposition of cholesterol molecules. We hypothesize that cellular recognition of cholesterol insufficiency causes cell cycle arrest in order to avoid a catastrophic failure in membrane synthesis. Here, we demonstrate using unbiased proteomics and standard biochemistry that cholesterol insufficiency causes upregulation of prohibitin, an inhibitor of cell cycle progression, through activation of a cholesterol‐responsive promoter element. We also demonstrate that prohibitin protects cells from apoptosis caused by cholesterol insufficiency. This is the first study tying cholesterol homeostasis to a specific cell cycle regulator that inhibits apoptosis. J. Cell. Biochem. 111: 1367–1374, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
152.
153.
Steric hindrance leads to limitation in the access of substrate into the enzyme active site. In order to decrease steric hindrance, two conserved residues, Phe181 and Phe182, in the lid domain of Bacillus thermocatenulatus lipase were substituted with alanine by using site-directed mutagenesis. As a result, three mutant lipases were produced. Circular dichroism (CD) spectroscopy showed that the secondary structure of all lipases is similar to one another. F181A mutation increased the distance between phe181 and catalytic ser114, which is buried in the active site by 3.24 Å. It can be suggested that such an increase in distance may lead to a decrease in steric hindrance. F181A mutation increased overall lipase activity by up to 2.6-fold (4670 U mg−1) toward C8 substrate. It also resulted in optimal lipase activity at 65 °C rather than 55 °C. F182A mutation increased the distance between phe182 and catalytic ser114 by 1.54 Å but failed to induce any significant effect on lipase activity. However, F181A–F182A mutation significantly decreased the activity due to decreased van der Waals interactions between the phenyl group of phenylalanines and the acyl chain of triacylglycerol. These results indicate that presence of one of the two residues, Phe181 or Phe182, is important for stabilizing triacylglycerols in active site.  相似文献   
154.
Phosphodiesterase inhibitors (PDEIs) are a class of drugs that are widely used because of their various pharmacological properties including cardiotonic, vasodilator, smooth muscle relaxant, antidepressant, antithrombotic, bronchodilator, antiinflammatory and enhancer of cognitive function. In the recent years, interest in drugs of plant origin has been progressively increased. Some pharmacologically active substances that come from plants demonstrate PDEI activity. They mainly belong to alkaloids, flavonoids, and saponins. In this review, studies on herbal PDEI were reviewed and their possible therapeutic applications were discussed. Screening plants for PDE inhibitory activity may help to develop standardized phytotherapeutic products or find new sources for new lead structures with PDEI pharmacological activity. The studies discussed in this paper are mainly in vitro and for more reasonable and conclusive results, it is required to conduct in vivo and finally human and clinical tests.  相似文献   
155.
Glioblastoma (GBM) is a malignant intracranial tumour with the highest proportion and lethality. It is characterized by invasiveness and heterogeneity. However, the currently available therapies are not curative. As an essential environmental cue that maintains glioma stem cells, hypoxia is considered the cause of tumour resistance to chemotherapy and radiation. Growing evidence shows that immunotherapy focusing on the tumour microenvironment is an effective treatment for GBM; however, the current clinicopathological features cannot predict the response to immunotherapy and provide accurate guidance for immunotherapy. Based on the ESTIMATE algorithm, GBM cases of The Cancer Genome Atlas (TCGA) data set were classified into high‐ and low‐immune/stromal score groups, and a four‐gene tumour environment‐related model was constructed. This model exhibited good efficiency at forecasting short‐ and long‐term prognosis and could also act as an independent prognostic biomarker. Additionally, this model and four of its genes (CLECL5A, SERPING1, CHI3L1 and C1R) were found to be associated with immune cell infiltration, and further study demonstrated that these four genes might drive the hypoxic phenotype of perinecrotic GBM, which affects hypoxia‐induced glioma stemness. Therefore, these might be important candidates for immunotherapy of GBM and deserve further exploration.  相似文献   
156.
Cisplatin resistance is one of the main obstacles in the treatment of advanced nasopharyngeal carcinoma (NPC). AKR1C1 is a member of the Aldo-keto reductase superfamily (AKRs), which converts aldehydes and ketones to their corresponding alcohols and has been reported to be involved in chemotherapeutic resistance of multiple drugs. The expression and function of AKR1C1 in NPC have not been reported until now. The aim of this research was to investigate the expression of AKR1C1 and it is role in cisplatin resistance in NPC. AKR1C1 protein expression was detected by immunohistochemistry in human NPC tissues and by Western blot assays in NPC and immortalized nasopharyngeal epithelial cells. The effects of AKR1C1 knock-down by siRNA on proliferation, migration and invasion in NPC cells were evaluated by CCK8, wound healing and transwell assays. To evaluate the effects of AKR1C1 silencing on cisplatin sensitivity in NPC cells, CCK8 assays were used to detect cell proliferation, flow cytometry was used to detect cell cycle distribution, and flow cytometry and DAPI staining were used to detect cell apoptosis. AKR1C1 down-regulation was associated with advanced clinicopathological characters such as larger tumor size, more lymphatic nodes involvement, with metastasis and later clinical stages, while AKR1C1 down-regulation was a good prognostic factor for overall survival (OS) in NPC patients. In vitro study showed that AKR1C1 was not directly involved in the malignant biological behaviours such as proliferation, cell cycle progression and migration of NPC cells, whereas AKR1C1 knock-down could enhance cisplatin sensitivity of NPC cells. These results suggest that AKR1C1 is a potential marker for predicting cisplatin response and could serve as a molecular target to increase cisplatin sensitivity in NPC.  相似文献   
157.
Niu  Lili  Guo  Yanchen  Lin  Zhengrong  Shi  Zhe  Bian  Tianyuan  Qi  Lin  Meng  Long  Grace  Anthony A.  Zheng  Hairong  Yuan  Ti-Fei 《中国科学:生命科学英文版》2020,63(9):1328-1336
Ultrasound stimulation is an emerging noninvasive option in treating neuropsychiatric disorders. The present study investigates the behavioral alterations resulting from ultrasound stimulation on the nucleus accumbens(NAc) in freely moving mice. Our results show that an acute ultrasound stimulation on the NAc, rather than the visual cortex or auditory cortex, led to a pronounced avoidance behavior, while repeated NAc ultrasound stimulation resulted in an obvious conditioned place aversion with changes in synaptic protein(Glu A1/2 subunit) expression. Notably, NAc ultrasound stimulation suppressed the morphine-induced conditioned place preference. The results provide evidence that NAc ultrasound stimulation can be applied as a potential noninvasive therapeutic option in treating psychiatric disorders.  相似文献   
158.
159.
Shen  He  Wu  Shuyu  Chen  Xi  Xu  Bai  Ma  Dezun  Zhao  Yannan  Zhuang  Yan  Chen  Bing  Hou  Xianglin  Li  Jiayin  Cao  Yudong  Fu  Xianyong  Tan  Jun  Yin  Wen  Li  Juan  Meng  Li  Shi  Ya  Xiao  Zhifeng  Jiang  Xingjun  Dai  Jianwu 《中国科学:生命科学英文版》2020,63(12):1879-1886
Science China Life Sciences - Spinal cord injury (SCI), especially complete transected SCI, leads to loss of cells and extracellular matrix and functional impairments. In a previous study, we...  相似文献   
160.
Glycosylphosphatidylinositol (GPI) anchoring plays key roles in many biological processes by targeting proteins to the cell wall; however, its roles are largely unknown in plant pathogenic fungi. Here, we reveal the roles of the GPI anchoring in Magnaporthe oryzae during plant infection. The GPI-anchored proteins were found to highly accumulate in appressoria and invasive hyphae. Disruption of GPI7, a GPI anchor-pathway gene, led to a significant reduction in virulence. The Δgpi7 mutant showed significant defects in penetration and invasive growth. This mutant also displayed defects of the cell wall architecture, suggesting GPI7 is required for cell wall biogenesis. Removal of GPI-anchored proteins in the wild-type strain by hydrofluoric acid (HF) pyridine treatment exposed both the chitin and β-1,3-glucans to the host immune system. Exposure of the chitin and β-1,3-glucans was also observed in the Δgpi7 mutant, indicating GPI-anchored proteins are required for immune evasion. The GPI anchoring can regulate subcellular localization of the Gel proteins in the cell wall for appressorial penetration and abundance of which for invasive growth. Our results indicate the GPI anchoring facilitates the penetration of M. oryzae into host cells by affecting the cell wall integrity and the evasion of host immune recognition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号