首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44357篇
  免费   4715篇
  国内免费   12篇
  49084篇
  2022年   318篇
  2021年   550篇
  2020年   376篇
  2019年   457篇
  2018年   579篇
  2017年   551篇
  2016年   957篇
  2015年   1726篇
  2014年   1694篇
  2013年   2226篇
  2012年   2550篇
  2011年   2254篇
  2010年   1564篇
  2009年   1443篇
  2008年   1960篇
  2007年   1961篇
  2006年   1751篇
  2005年   1701篇
  2004年   1615篇
  2003年   1405篇
  2002年   1405篇
  2001年   1369篇
  2000年   1347篇
  1999年   1201篇
  1998年   661篇
  1997年   620篇
  1996年   603篇
  1995年   583篇
  1994年   536篇
  1993年   573篇
  1992年   1139篇
  1991年   856篇
  1990年   890篇
  1989年   852篇
  1988年   741篇
  1987年   673篇
  1986年   694篇
  1985年   774篇
  1984年   603篇
  1983年   467篇
  1982年   387篇
  1981年   343篇
  1980年   290篇
  1979年   425篇
  1978年   371篇
  1977年   280篇
  1976年   259篇
  1975年   233篇
  1974年   321篇
  1973年   284篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
112.
113.
114.
115.
To cope with changes in the environment, organisms not only show behavioural but also phenotypic adjustments. This is well established for the digestive tract. Here we present a first case of birds adjusting their flight machinery in response to predation risk. In an indoor experiment, ruddy turnstones Arenaria interpres were subjected to an unpredictable daily appearance of either a raptor or a small gull (as a control). Ruddy turnstones experiencing threat induced by a flying raptor model, longer than after similar passage by the gull model, refrained from feeding after this disturbance. Pectoral muscle mass, but not lean mass, responded in a course of a few days to changes in the perceived threat of predation. Pectoral muscle mass increased after raptor scares. Taking the small increases in body mass into account, pectoral muscle mass was 3.6% higher than aerodynamically predicted for constant flight performance. This demonstrates that perceived risk factors may directly affect organ size.  相似文献   
116.
117.
Aim The seagrass, Posidonia oceanica is a clonal angiosperm endemic to the Mediterranean Sea. Previous studies have suggested that clonal growth is far greater than sexual recruitment and thus leads to low clonal diversity within meadows. However, recently developed microsatellite markers indicate that there are many different genotypes, and therefore many distinct clones present. The low resolution of markers used in the past limited our ability to estimate clonality and assess the individual level. New high‐resolution dinucleotide microsatellites now allow genetically distinct individuals to be identified, enabling more reliable estimation of population genetic parameters across the Mediterranean Basin. We investigated the biogeography and dispersal of P. oceanica at various spatial scales in order to assess the influence of different evolutionary factors shaping the distribution of genetic diversity in this species. Location The Mediterranean. Methods We used seven hypervariable microsatellite markers, in addition to the five previously existing markers, to describe the spatial distribution of genetic variability in 34 meadows spread throughout the Mediterranean, on the basis of an average of 35.6 (± 6.3) ramets sampled. Results At the scale of the Mediterranean Sea as a whole, a strong east–west cleavage was detected (amova) . These results are in line with those obtained using previous markers. The new results showed the presence of a putative secondary contact zone at the Siculo‐Tunisian Strait, which exhibited high allelic richness and shared alleles absent from the eastern and western basins. F statistics (pairwise θ ranges between 0.09 and 0.71) revealed high genetic structure between meadows, both at a small scale (about 2 to 200 km) and at a medium scale within the eastern and western basins, independent of geographical distance. At the intrameadow scale, significant spatial autocorrelation in six out of 15 locations revealed that dispersal can be restricted to the scale of a few metres. Main conclusions A stochastic pattern of effective migration due to low population size, turnover and seed survival is the most likely explanation for this pattern of highly restricted gene flow, despite the importance of an a priori seed dispersal potential. The east–west cleavage probably represents the outline of vicariance caused by the last Pleistocene ice age and maintained to this day by low gene flow. These results emphasize the diversity of evolutionary processes shaping the genetic structure at different spatial scales.  相似文献   
118.
119.
Thermodilution cardiac output determinations and multigated equilibrium blood-pool scintigraphy were performed in ten healthy chacma baboons (Papio ursinus). The correlation was moderately good between both the radionuclide and thermodilution stroke volume (r = 0.58, SEE = 3 ml; SVth = 0.78SVr + 15.6 ml) as well as the cardiac output (r = 0.72, SEE = 0.2 liter/min; COth = 0.56 Cor + 2.1 liter/min). The attenuation depth dr as determined by radionuclide techniques was found to correlate well with the radiologically determined values dx (r = 0.8, SEE = 0.4 cm; dx = 0.87dr + 0.72 cm) which validated the depth values used in the calculations.  相似文献   
120.
Alcaligenes denitrificans NTB-1, previously isolated on 4-chlorobenzoate, also utilized 4-bromo-, 4-iodo-, and 2,4-dichlorobenzoate but not 4-fluorobenzoate as a sole carbon and energy source. During growth, stoichiometric amounts of halide were released. Experiments with whole cells and cell extracts revealed that 4-bromo- and 4-iodobenzoate were metabolized like 4-chlorobenzoate, involving an initial hydrolytic dehalogenation yielding 4-hydroxybenzoate, which in turn was hydroxylated to 3,4-dihydroxybenzoate. The initial step in the metabolism of 2,4-dichlorobenzoate was catalyzed by a novel type of reaction for aerobic organisms, involving inducible reductive dechlorination to 4-chlorobenzoate. Under conditions of low and controlled oxygen concentrations, A. denitrificans NTB-1 converted all 4-halobenzoates and 2,4-dichlorobenzoate almost quantitatively to 4-hydroxybenzoate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号