首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42787篇
  免费   3951篇
  国内免费   14篇
  46752篇
  2022年   327篇
  2021年   565篇
  2020年   389篇
  2019年   482篇
  2018年   567篇
  2017年   534篇
  2016年   939篇
  2015年   1684篇
  2014年   1643篇
  2013年   2151篇
  2012年   2440篇
  2011年   2173篇
  2010年   1509篇
  2009年   1361篇
  2008年   1863篇
  2007年   1848篇
  2006年   1665篇
  2005年   1618篇
  2004年   1504篇
  2003年   1305篇
  2002年   1302篇
  2001年   1266篇
  2000年   1276篇
  1999年   1156篇
  1998年   625篇
  1997年   582篇
  1996年   589篇
  1995年   557篇
  1994年   514篇
  1993年   533篇
  1992年   1051篇
  1991年   803篇
  1990年   816篇
  1989年   801篇
  1988年   698篇
  1987年   642篇
  1986年   649篇
  1985年   749篇
  1984年   556篇
  1983年   442篇
  1982年   355篇
  1981年   330篇
  1980年   271篇
  1979年   403篇
  1978年   357篇
  1977年   253篇
  1976年   230篇
  1975年   210篇
  1974年   309篇
  1973年   270篇
排序方式: 共有10000条查询结果,搜索用时 18 毫秒
101.
Episialin (MUC1, PEM, EMA, CA15-3 antigen) is a sialylated, membrane-associated glycoprotein with an extended mucin-like ectodomain. This domain mainly consists of 30-90 homologous 20-amino acid repeats that are rich in O-glycosylation sites (serines and threonines). It is likely that this part forms a polyproline beta-turn helix. As a result, the ectodomain can protrude more than 200 nm above the cell surface, whereas most cell surface molecules do not exceed a length of 35 nm. Normally, episialin is present at the apical side of glandular epithelial cells. On carcinoma cells, however, it can be strongly overexpressed and it is often present over the entire cell surface. We have previously shown that episialin, if it is interspersed between adhesion molecules, nonspecifically reduces cell-cell and cell-extracellular matrix interactions in vitro and in vivo, presumably by steric hindrance caused by the extreme length and high density of the episialin molecules at the cell surface. To analyze the molecular mechanism for this anti-adhesion effect in more detail, we have now deleted an increasing number of repeats in the episialin cDNA and transfected the resulting mutants into murine L929 cells expressing the homophilic adhesion molecule E-cadherin. Here we show that the length of episialin is the dominant factor that determines the inhibition of E-cadherin-mediated cell-cell interactions. For the anti-adhesive effect mediated by the full length episialin, charge repulsion by negatively charged sialylated O-linked glycans is far less important.  相似文献   
102.
Summary Laminin synthesis and deposition are concomitant with the development of a basal lamina between the human epidermis and the underlying dermis. One of the challenges in tissue engineering of human epidermal models is to develop substrates and conditions that encourage the development of a basement membrane. The purpose of this study was to determine if actin filaments and/or microtubules are involved in the synthesis/secretion of laminin by normal human epidermal keratinocytes (NHEK)in vitro. NHEK synthesize and secrete laminin subunits B1, B2, and M but little, if any, of laminin subunit A. Data indicate that disruption of microfilaments by the destabilizing agent, cytochalasin D, had no apparent effect on the relative synthesis rates of most cytosolic proteins as, revealed by one-dimensional sodium dodecyl sulfate (SDS) gel electrophoresis. This drug, however, increased laminin B2 synthesis several fold over untreated controls. This enhanced synthetic rate was independent of the type of collagen, matrix on which the NHEK were grown. Similar increases in synthesis of the M and B1 laminin chains were not observed. To determine if this increase in synthesis lead to increases in laminin B2 secretion, laminin B2 was immunoprecipitated from both the apical and basal domains of NHEK cells grown on microporous membranes. While more laminin B1, B2, and M were secreted basally than apically, an observation consistent with laminin’s role in basal lamina formation, cytochalasin D had no apparent effect on either basal or apical laminin B2 secretion. Experiments with the microtubule destabilizer, nocodazole, showed no similar effects on laminin synthesis and/or secretion. We conclude that (a) disruption of the actin network in NHEK selectively increases the synthesis of laminin B2, (b) the secretion of laminin B2 from NHEK cells is not governed by either the microfilamentous cytoskeleton or the amount of laminin synthesized by NHEK, and (c) disruption of the microtubular network does not alter laminin synthesis or secretion.  相似文献   
103.
104.
Dinitrogen-fixing legumes are frequently assumed to be less water-use efficient than plants utilizing soil mineral N, because of the high respiratory requirements for driving N2 fixation. However, since respiration is assumed not to discriminate against 13C, any differences in water-use efficiency exclusively due to respiration should not be apparent in carbon isotope discrimination () values. Our objective was to determine if the source of N (N2 fixation versus soil N) had any effect on of field-grown grain legumes grown at different elevations. Four legume species, Glycine max, Phaseolus lunatus, P. vulgaris, and Vigna unguiculata, were grown on five field sites spanning a 633 m elevational gradient on the island of Maui, Hawaii. The legumes were either inoculated with a mixture of three effective strains of rhizobia or fertilized weekly with urea at 100 kg N ha-1 in an attempt to completely suppress symbiotic N2-fixing activity. In 14 of 20 analyses of stover and 12 of 15 analyses of seed values were significantly higher (p=0.10) in the inoculated plants than the N-fertilized plants. Nitrogen concentrations were generally higher in the fertilized treatments than the inoculated treatments. The different values obtained depending on N-source may have implications in using as an indicator of water-use efficiency or yield potential of legumes.  相似文献   
105.
Abstract Water flow-innduced transport of Burkholderia cepacia strain P2 and Pseudomonas fluorescens strain R2f cells through intact cores of loamy sand and silt loam field soils was measured for two percolation regimes, 0.9 and 4.4 mm h−1, applied daily during 1 hour. For each strain, transport was generally similar between the two water regimes. Translocation of B. cepacia , with 4.4 mm h−1, did occur initially in both soils. In the loamy sand soil, no change in the bacterial distribution occurred during the experiment (51 days). In the silt loam, B. cepacia cell numbers in the lower soil layers were significantly reduced, to levels at or below the limit of detection. Transport of P. fluorescens in both soils also occurred initially and was comparable to that of B. cepacia . Later in the experiment, P. fluorescens was not detectable in the lower soil layers of the loamy sand cores, due to a large decrease in surviving cell numbers. In the silt loam, the inoculant cell distribution did not change with time. Pre-incubation of the inoculated cores before starting percolation reduced B. cepacia inoculant transport in the loamy sand soil measured after 5 days, but not that determined after 54 days. Delayed percolation in the silt loam soil affected bacterial transport only after 54 days. The presence of growing wheat plants overall enhanced bacterial translocation as compared to that in unplanted soil cores, but only with percolating water. Percolation water from silt loam cores appeared the day after the onset of percolation and often contained inoculant bacteria. With loamy sand, percolation water appeared only 5 days after the start of percolation, and no inoculant bacteria were found. The results presented aid in predicting the fate of genetically manipulated bacteria in a field experiment.  相似文献   
106.
Recent research on the organo-chemical composition of Sphagnum and on the fate of its litter has further clarified how this plant builds acidic, nutrient-poor, cold and anoxic peat bogs. The bog environment helps Sphagnum to outcompete other plants for light. Its morphology, anatomy, physiology and composition make it an effective ecosystem engineer and at the same time benefit the plant in the short term. This may have facilitated the evolution of the genus.  相似文献   
107.
Abstract: Galactosylceramide ("galactocerebroside"; GalC) is a major glycolipid in the myelin sheath of the CNS and the PNS. The enzyme UDP-galactose:ceramide galactosyltransferase (CGalT) catalyzes the final step of the synthesis of GalC: the transfer of galactose to ceramide. By a differential screening approach, we have isolated a cDNA, the sequence of which is identical to the recently isolated cDNA clones for CGalT. By northern analysis and in situ hybridization we demonstrated that CGalT mRNA is expressed at birth in oligodendrocytes and Schwann cells, an expression pattern corresponding to the onset of myelination. In addition to the high expression levels of CGalT in oligodendrocytes and Schwann cells, in situ hybridization also showed expression in subtypes of neurons in spinal cord, cerebellum, and brainstem in the adult CNS, but at a much lower level than in oligodendrocytes. Expression of CGalT in COS cells demonstrated that CGalT has a preference for hydroxyceramide as a substrate. CGalT-expressing COS cells synthesize and transport GalC to their cell surface as shown by immunofluorescence and by lipid analysis of living cells. Our results suggested that the CGalT specifically uses hydroxyceramide for the synthesis of GalC and that separate (co)enzymes are not needed.  相似文献   
108.
In three-phase internal loop airlift reactors, the detachment of biomass from suspended biofilm pellets in the presence of bare carrier particles was investigated under nongrowth conditions. The detachment rate was dominated by collisions between bare carrier particles and biofilm pellets. The concentration of bare carrier particles and the carrier roughness strongly influenced the detachment rate. A change in flow regime from bubbling to slug flow considerably increased the detachment rate. Otherwise, the superficial gas velocity did not directly affect the detachment rate. The influence of particle size was not clear. The bottom clearance did not affect the detachment rate within the tested range. Other aspects of reactor geometry might be important. The main detachment processes were abrasion and breakage of biofilm pellets. During the detachment process, two phases could be distinguished. In the first phase the detachment was relatively high, and both breakage and abrasion of biofilm pellets occurred. During the second phase, breakage dominated and the detachment rate was lower. The two-phase behavior is explained by differences in strength between the inner and outer biofilm layers, possibly caused by variations in local growth rates during biofilm formation. Differences in growth history might also explain the various detachment rates observed with different biofilm batches. (c) 1995 John Wiley & Sons, Inc.  相似文献   
109.
Aiouea opaca andBeilschmiedia hexanthera, recently collected in central French Guiana, are described and illustrated.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号