首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   9篇
  251篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2017年   4篇
  2016年   4篇
  2015年   7篇
  2014年   11篇
  2013年   4篇
  2012年   13篇
  2011年   16篇
  2010年   6篇
  2009年   4篇
  2008年   11篇
  2007年   8篇
  2006年   15篇
  2005年   4篇
  2004年   10篇
  2003年   5篇
  2002年   3篇
  2001年   9篇
  2000年   8篇
  1999年   11篇
  1998年   3篇
  1995年   5篇
  1992年   4篇
  1991年   6篇
  1990年   4篇
  1989年   5篇
  1988年   4篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1979年   3篇
  1978年   10篇
  1977年   5篇
  1976年   1篇
  1975年   2篇
  1974年   6篇
  1972年   2篇
  1971年   7篇
  1970年   2篇
  1969年   1篇
  1963年   1篇
  1960年   1篇
  1954年   1篇
  1943年   1篇
排序方式: 共有251条查询结果,搜索用时 15 毫秒
191.
We have investigated the changes in protein kinase C (PKC) activity after treatment of several cell lines with TNF. Binding studies with [3H]phorbol dibutyrate (PBt2) on whole cells revealed rapid and transient activation of PKC in Jurkat, K562, and U937 cells with a maximum of phorbol ester binding at 6 min after TNF treatment. As shown by Scatchard analysis, the TNF-induced increase of [3H]PBt2 binding reflected increments of phorbol ester binding site numbers rather than greater binding affinities. Upon subfractionation of TNF-treated U937 cells a transient increase of PBt2 binding in the membrane fraction was accompanied by a long term loss of PBt2-binding in the cytosol, indicating a TNF-induced translocation of PKC from the cytosol to the cell membrane. With histone III-S as a substrate, the determination of specific PKC activity revealed similar kinetics of PKC translocation in U937 cells. TNF also induced PKC translocation in K562 and Jurkat cells. However, although TNF caused long term down-regulation of cytosolic PKC activity in U937 cells, the cytosolic PKC activity only transiently decreased in both Jurkat and K562 cells and then recovered to near basal levels. In the human nonmalignant fibroblast cell line CCD18, PKC was not activated by TNF. Our data suggest that PKC activation may play a major role in TNF signal transduction in some, but not all target cells.  相似文献   
192.
Signaling by tumor necrosis factor (TNF) receptor 1 (TNF-R1), a prototypic member of the death receptor family, mediates pleiotropic biological outcomes ranging from inflammation and cell proliferation to cell death. Although many elements of specific signaling pathways have been identified, the main question of how these selective cell fate decisions are regulated is still unresolved. Here we identified TNF-induced K63 ubiquitination of TNF-R1 mediated by the ubiquitin ligase RNF8 as an early molecular checkpoint in the regulation of the decision between cell death and survival. Downmodulation of RNF8 prevented the ubiquitination of TNF-R1, blocked the internalization of the receptor, prevented the recruitment of the death-inducing signaling complex and the activation of caspase-8 and caspase-3/7, and reduced apoptotic cell death. Conversely, recruitment of the adaptor proteins TRADD, TRAF2, and RIP1 to TNF-R1, as well as activation of NF-κB, was unimpeded and cell growth and proliferation were significantly enhanced in RNF8-deficient cells. Thus, K63 ubiquitination of TNF-R1 can be sensed as a new level of regulation of TNF-R1 signaling at the earliest stage after ligand binding.  相似文献   
193.
Crustaceans are intensively farmed in aquaculture facilities where they are vulnerable to parasites, bacteria, or viruses, often severely compromising the rearing success. The ubiquitin-proteasome system (UPS) is crucial for the maintenance of cellular integrity. Analogous to higher vertebrates, the UPS of crustaceans may also play an important role in stress resistance and pathogen defense. We studied the general properties of the proteasome system in the hemocytes of the whiteleg shrimp, Penaeus vannamei, and the European brown shrimp Crangon crangon. The 20S proteasome was the predominant proteasome population in the hemocytes of both species. The specific activities of the trypsin-like (Try-like), chymotrypsin-like (Chy-like), and caspase-like (Cas-like) enzymes of the shrimp proteasome differed between species. P. vannamei exhibited a higher ratio of Try-like to Chy-like activities and Cas-like to Chy-like activities than C. crangon. Notably, the Chy-like activity of P. vannamei showed substrate or product inhibition at concentrations of more than 25 mmol L?1. The K M values ranged from 0.072 mmol L?1 for the Try-like activity of P. vannamei to 0.309 mmol L?1 for the Cas-like activity of C. crangon. Inhibition of the proteasome of P. vannamei by proteasome inhibitors was stronger than in C. crangon. The pH profiles were similar in both species. The Try-like, Chy-like, and Cas-like sites showed the highest activities between pH 7.5 and 8.5. The proteasomes of both species were sensitive against repeated freezing and thawing losing ~80–90% of activity. This study forms the basis for future investigations on the shrimp response against infectious diseases, and the role of the UPS therein.  相似文献   
194.
RNA interference (RNAi) offers a powerful tool to specifically direct the degradation of complementary RNAs, and thus has great therapeutic potential for targeting diseases. Despite the reported preferences of RNAi, there is still a need for new techniques that will allow for a detailed mechanistic characterization of RNA-induced silencing complex (RISC) assembly and activity to further improve the biocompatibility of modified siRNAs. In contrast to previous reports, we investigated the effects of 2′-O-methyl (2′OMe) modifications introduced at specific positions within the siRNA at the early and late stages of RISC assembly, as well as their influence on target recognition and cleavage directly in living cells. We found that six to 10 2′OMe nucleotides on the 3′-end inhibit passenger-strand release as well as target-RNA cleavage without changing the affinity, strand asymmetry, or target recognition. 2′OMe modifications introduced at the 5′-end reduced activated RISC stability, whereas incorporations at the cleavage site showed only minor effects on passenger-strand release when present on the passenger strand. Our new fluorescence cross-correlation spectroscopy assays resolve different steps and stages of RISC assembly and target recognition with heretofore unresolved detail in living cells, which is needed to develop therapeutic siRNAs with optimized in vivo properties.  相似文献   
195.
  • Climate anomalies have resulted in changing forest productivity, increasing tree mortality in Central and Southern Europe. This has resulted in more severe and frequent ecological disturbances to forest stands. This study analysed the size‐dependence of growth response to drought years based on 384 tree individuals of Norway spruce [Picea abies (L.) Karst.] and European beech [Fagus sylvatica ([L.)] in Bavaria, Germany.
  • Samples were collected in both monospecific and mixed‐species stands. To quantify the growth response to drought stress, indices for basal area increment, resistance, recovery and resilience were calculated from tree ring measurements of increment cores. Linear mixed models were developed to estimate the influence of drought periods.
  • The results show that ageing‐related growth decline is significant in drought years. Drought resilience and resistance decrease significantly with growth size among Norway spruce individuals. Evidence is also provided for robustness in the resilience capacity of European beech during drought stress. Spruce benefits from species mixing with deciduous beech, with over‐yielding spruce in pure stands.
  • The importance of the influence of size‐dependence within tree growth studies during disturbances is highlighted and should be considered in future studies of disturbances, including drought.
  相似文献   
196.
197.
While previous studies focused on tree growth in pure stands, we reveal that tree resistance and resilience to drought stress can be modified distinctly through species mixing. Our study is based on tree ring measurement on cores from increment boring of 559 trees of Norway spruce (Picea abies [L.] Karst.), European beech (Fagus sylvatica [L.]) and sessile oak (Quercus petraea (Matt.) Liebl.) in South Germany, with half sampled in pure, respectively, mixed stands. Indices for resistance, recovery and resilience were applied for quantifying the tree growth reaction on the episodic drought stress in 1976 and 2003. The following general reaction patterns were found. (i) In pure stands, spruce has the lowest resistance, but the quickest recovery; oak and beech were more resistant, but recover was much slower and they are less resilient. (ii) In mixture, spruce and oak perform as in pure stands, but beech was significantly more resistant and resilient than in monoculture. (iii) Especially when mixed with oak, beech is facilitated. We hypothesise that the revealed water stress release of beech emerges in mixture because of the asynchronous stress reaction pattern of beech and oak and a facilitation of beech by hydraulic lift of water by oak. This facilitation of beech in mixture with oak means a contribution to the frequently reported overyield of beech in mixed versus pure stands. We discuss the far‐reaching implications that these differences in stress response under intra‐ and inter‐specific environments have for forest ecosystem dynamics and management under climate change.  相似文献   
198.
The regulation of mast cell activities and survival is a central issue in inflammatory immune responses. Here, we have investigated the role of mouse interleukin-15, a pro-inflammatory and pleiotropic cytokine, in the control of mast cell survival and homeostasis. We report that aged IL-15−/− mice show a reduced number of peritoneal mast cells compared to WT mice. Furthermore, IL-15 deficiency in bone marrow derived mouse mast cells (BMMCs) results in increased susceptibility to apoptosis mediated by growth factor deprivation and A-SMase-treatment. IL-15−/− BMMCs show a constitutive stronger mRNA and protein expression as well as enzymatic activity of the members of the mitochondrial apoptotic pathways including acidic lysosomal aspartate protease cathepsin D (CTSD), endogenous acid sphingomyelinase (A-SMase), caspase-3 and -7 compared to wild type (WT) BMMCs. Furthermore, IL-15−/− BMMCs constitutively generate more A-SMase-derived ceramide than WT controls and display a decreased expression of pro-survival sphingosin-1-phosphate (SPP) both in cytosol and membrane cell fractions. Furthermore, pre-treatment of mast cells with imipramine or pepstatin A, inhibitors of the intracellular acid sphingomyelinase and cathepsin D pathways respectively, increases survival in IL-15−/− BMMCs. These findings suggest that intracellular IL-15 is a key regulator of pathways controlling primary mouse mast cell homeostasis.  相似文献   
199.
Pectinidae, a large group of marine bivalves comprising more than 300 species worldwide, inhabit a diverse array of habitats, enabling an enormous radiation, and yielding many different life forms and adaptations. This apparent diversity led to the distinction of ecotypes based on shell morphology and lifestyle. Eyes in Pectinidae (Bivalvia, Pteriomorphia) have long sparked scientific interest and have been described for various species over the past two centuries. These eyes are morphologically and functionally highly complex. Despite this complexity, studies have focused mostly on functional aspects with only few examining the relationships associated with different environmental or evolutionary traits. Here, the pallial eye structure within the Pectinidae was examined using Masson Goldner Trichrom staining, and ancestral character estimation with BayesTraits was performed to reconstruct macro-evolutionary patterns. To evaluate the connection of substrate type and lifestyle to the evolution of eyes, we compared eyes within the major subgroups of Pectinidae while considering the different lifestyles and substrate types as well as different depth ranges. The results indicate a tendency towards a taxon-/clade-specific evolution in respect to characters such as the cornea and lens while depth specific adaptations occur mainly in the light sensitive compartments of the retina. Successive reduction of eyes seems to occur from shallow to deep water species and ends in a total reduction of all structures in deep sea species.  相似文献   
200.
Human peripheral blood mononuclear phagocytes are induced by activated Factor B (Bb) of the complement alternative pathway to undergo morphological shape changes in vitro which have been described as "spreading." The spreading reaction induced by Bb has previously been shown to depend upon the enzymatic activity of Bb and to be inhibited by Fab' antibody fragments directed to C5 (but not anti-C3 Fab'). The possibility that Bb may exert its effect on monocytes by initiating assembly of terminal complement complexes comprised of C5b, 6, 7, C5b-8, or C5b-9 was addressed in the present study. The effects were tested of Fab' and F(ab')2 antibody fragments directed to C5, C6, C7, and C8 and to neoantigens expressed in the assembling terminal complement complexes on the monocyte spreading reaction induced by Bb. Differential effects of monovalent Fab' and divalent F(ab')2 antibody fragments were observed. Anti-C5, C6, and C7 Fab' were found to inhibit the spreading reaction induced by Bb in an immunologically specific manner. Divalent F(ab')2 fragments directed to these same proteins (but not to C3, C4, C8, or C9) induced monocyte spreading in the complete absence of Bb or other recognized inducing agents. Monocyte spreading induced by hybridoma immunoglobulin (Ig) directed to C5 and C7 was found to be correlated with the binding of 10(6) molecules Ig per cell. These findings support the notion that C5, C6, and C7 (or an analogous system of cellular proteins) are associated with the surface of human peripheral blood monocytes and that these proteins may play a role in certain reactions by which mononuclear phagocytes are induced to altered states of cellular physiology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号