首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   7篇
  2021年   1篇
  2018年   1篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   4篇
  2011年   6篇
  2010年   5篇
  2009年   2篇
  2008年   1篇
  2007年   5篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   4篇
  1970年   1篇
  1968年   1篇
  1963年   1篇
排序方式: 共有76条查询结果,搜索用时 31 毫秒
31.
Actinomycetes are a rich source for the synthesis of medically and technically useful natural products. The genes encoding the enzymes for their biosynthesis are normally organized in gene clusters, which include also the information for resistance (in the case of antibacterial compounds), regulation, and transport. This facilitates the manipulation of such pathways by molecular genetic techniques. Recent advances in DNA sequencing and analytical chemistry revealed that not only new strains isolated from yet unexplored habitats, but also already known strains possess a large potential for the synthesis of novel compounds. Synthetic Biology now offers a new perspective to exploit this potential further by generating novel pathways, and thereby novel products, by combining different biosynthetic steps originating from different bacteria. The supply of precursors, which are subsequently incorporated into the final product, is often already organized in a modular manner in nature and may directly be exploited for Synthetic Biology. Here we report examples for the synthesis of building blocks and possibilities to modify and optimize antibiotic biosynthesis, exemplary for the synthesis of the manipulation of the synthesis of the glycopeptide antibiotic balhimycin.  相似文献   
32.
A prerequisite for adaptive goal-directed behavior is that animals constantly evaluate action outcomes and relate them to both their antecedent behavior and to stimuli predictive of reward or non-reward. Here, we investigate whether single neurons in the avian nidopallium caudolaterale (NCL), a multimodal associative forebrain structure and a presumed analogue of mammalian prefrontal cortex, represent information useful for goal-directed behavior. We subjected pigeons to a go-nogo task, in which responding to one visual stimulus (S+) was partially reinforced, responding to another stimulus (S–) was punished, and responding to test stimuli from the same physical dimension (spatial frequency) was inconsequential. The birds responded most intensely to S+, and their response rates decreased monotonically as stimuli became progressively dissimilar to S+; thereby, response rates provided a behavioral index of reward expectancy. We found that many NCL neurons'' responses were modulated in the stimulus discrimination phase, the outcome phase, or both. A substantial fraction of neurons increased firing for cues predicting non-reward or decreased firing for cues predicting reward. Interestingly, the same neurons also responded when reward was expected but not delivered, and could thus provide a negative reward prediction error or, alternatively, signal negative value. In addition, many cells showed motor-related response modulation. In summary, NCL neurons represent information about the reward value of specific stimuli, instrumental actions as well as action outcomes, and therefore provide signals useful for adaptive behavior in dynamically changing environments.  相似文献   
33.
Sudden cardiac death (SCD) continues to be one of the leading causes of mortality worldwide, with an annual incidence estimated at 250,000–300,000 in the United States and with the vast majority occurring in the setting of coronary disease. We performed a genome-wide association meta-analysis in 1,283 SCD cases and >20,000 control individuals of European ancestry from 5 studies, with follow-up genotyping in up to 3,119 SCD cases and 11,146 controls from 11 European ancestry studies, and identify the BAZ2B locus as associated with SCD (P = 1.8×10−10). The risk allele, while ancestral, has a frequency of ∼1.4%, suggesting strong negative selection and increases risk for SCD by 1.92–fold per allele (95% CI 1.57–2.34). We also tested the role of 49 SNPs previously implicated in modulating electrocardiographic traits (QRS, QT, and RR intervals). Consistent with epidemiological studies showing increased risk of SCD with prolonged QRS/QT intervals, the interval-prolonging alleles are in aggregate associated with increased risk for SCD (P = 0.006).  相似文献   
34.
Family studies suggest a genetic component to the etiology of chronic kidney disease (CKD) and end stage renal disease (ESRD). Previously, we identified 16 loci for eGFR in genome-wide association studies, but the associations of these single nucleotide polymorphisms (SNPs) for incident CKD or ESRD are unknown. We thus investigated the association of these loci with incident CKD in 26,308 individuals of European ancestry free of CKD at baseline drawn from eight population-based cohorts followed for a median of 7.2 years (including 2,122 incident CKD cases defined as eGFR <60ml/min/1.73m2 at follow-up) and with ESRD in four case-control studies in subjects of European ancestry (3,775 cases, 4,577 controls). SNPs at 11 of the 16 loci (UMOD, PRKAG2, ANXA9, DAB2, SHROOM3, DACH1, STC1, SLC34A1, ALMS1/NAT8, UBE2Q2, and GCKR) were associated with incident CKD; p-values ranged from p = 4.1e-9 in UMOD to p = 0.03 in GCKR. After adjusting for baseline eGFR, six of these loci remained significantly associated with incident CKD (UMOD, PRKAG2, ANXA9, DAB2, DACH1, and STC1). SNPs in UMOD (OR = 0.92, p = 0.04) and GCKR (OR = 0.93, p = 0.03) were nominally associated with ESRD. In summary, the majority of eGFR-related loci are either associated or show a strong trend towards association with incident CKD, but have modest associations with ESRD in individuals of European descent. Additional work is required to characterize the association of genetic determinants of CKD and ESRD at different stages of disease progression.  相似文献   
35.
36.
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that plays a role in innate and adaptive immunity. Depending on the cellular context and disease state, MIF signaling is mediated by its receptors CXCR2, CXCR4 and/or CD74. Although it is known that MIF is endocytosed, the exact mechanism has remained unknown. In exploring the mechanism of MIF endocytosis with biologically active Alexa(546)MIF, pathway-specific inhibitors (monodansylcadaverine, MDC; chlorpromazine, CPZ; dynasore; dominant-negative dynamin, bafilomycin, nocodazole) and receptor overexpression and blockade approaches, we identified a clathrin/dynamin-dependent endocytosis pathway as the main track for MIF internalization. MIF endocytosis was rapid and colocalization with both early and late endosomal vesicles in a microtubule- and acidification-dependent manner was observed. LDL endocytosis (which is clathrin-mediated) served as a control and was similarly inhibited by MDC or dynasore. When MIF endocytosis was compared to that of transferrin, acetylated LDL, and choleratoxin B (the latter internalized by a clathrin-independent pathway) by colocalization studies, the MIF internalization pathway clearly resembled that of LDL but also shared early trafficking with transferrin, whereas no colocalization with choleratoxin was noted. To identify the receptors involved in MIF endocytosis, we focused on CD74 and CXCR4 which form a heteromeric complex. Ectopic overexpression of CD74 in HEK293 and HeLa cells, which do not endogenously express CD74, led to a marked acceleration of MIF endocytosis while pharmacological blockade of CXCR4, which is endogenously expressed on these cells, with AMD3100 led to a 20% reduction of MIF endocytosis in HEK293-CD74 transfectants, whereas in untransfected cells, a blockade of 40% was observed. Of note, both CD74 and CXCR4 strongly colocalize with Alexa(546)MIF both on the plasma membrane and in endosomal compartments. Moreover, MIF-stimulated AKT signaling, which was previously shown to involve both CD74 and CXCR4, was reduced by endocytosis inhibitors, indicating that MIF signaling is at least in part due to endosomal signaling mechanisms. Thus, MIF uptake follows a rapid LDL-like, clathrin- and dynamin-dependent endocytosis pathway, which is dependent on the receptors CD74 and CXCR4 and leads to the initiation of endosomal signaling responses.  相似文献   
37.
38.
39.
The primary cilium has evolved as a multifunctional cellular compartment that decorates most vertebrate cells. Cilia sense mechanical stimuli in various organs, but the molecular mechanisms that convert the deflection of cilia into intracellular calcium transients have remained elusive. Polycystin-2 (TRPP2), an ion channel mutated in polycystic kidney disease, is required for cilia-mediated calcium transients but lacks mechanosensitive properties. We find here that TRPP2 utilizes TRPV4 to form a mechano- and thermosensitive molecular sensor in the cilium. Depletion of TRPV4 in renal epithelial cells abolishes flow-induced calcium transients, demonstrating that TRPV4, like TRPP2, is an essential component of the ciliary mechanosensor. Because TRPV4-deficient zebrafish and mice lack renal cysts, our findings challenge the concept that defective ciliary flow sensing constitutes the fundamental mechanism of cystogenesis.  相似文献   
40.
Mutations in TRPP2 (polycystin-2) cause autosomal dominant polycystic kidney disease (ADPKD), a common genetic disorder characterized by progressive development of fluid-filled cysts in the kidney and other organs. TRPP2 is a Ca(2+)-permeable nonselective cation channel that displays an amazing functional versatility at the cellular level. It has been implicated in the regulation of diverse physiological functions including mechanosensation, cell proliferation, polarity, and apoptosis. TRPP2 localizes to different subcellular compartments, such as the endoplasmic reticulum (ER), the plasma membrane and the primary cilium. The channel appears to have distinct functions in different subcellular compartments. This functional compartmentalization is thought to contribute to the observed versatility and specificity of TRPP2-mediated Ca(2+) signaling. In the primary cilium, TRPP2 has been suggested to function as a mechanosensitive channel that detects fluid flow in the renal tubule lumen, supporting the proposed role of the primary cilium as the unifying pathogenic concept for cystic kidney disease. This review summarizes the known and emerging functions of TRPP2, focusing on the question of how channel function translates into complex morphogenetic programs regulating tubular structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号