首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4795篇
  免费   365篇
  国内免费   1篇
  5161篇
  2023年   13篇
  2022年   41篇
  2021年   80篇
  2020年   55篇
  2019年   58篇
  2018年   98篇
  2017年   79篇
  2016年   131篇
  2015年   246篇
  2014年   254篇
  2013年   327篇
  2012年   411篇
  2011年   403篇
  2010年   223篇
  2009年   188篇
  2008年   297篇
  2007年   305篇
  2006年   256篇
  2005年   255篇
  2004年   224篇
  2003年   211篇
  2002年   206篇
  2001年   66篇
  2000年   48篇
  1999年   62篇
  1998年   55篇
  1997年   54篇
  1996年   52篇
  1995年   37篇
  1994年   37篇
  1993年   29篇
  1992年   46篇
  1991年   27篇
  1990年   28篇
  1989年   27篇
  1988年   23篇
  1987年   25篇
  1986年   28篇
  1985年   19篇
  1984年   12篇
  1983年   12篇
  1982年   8篇
  1981年   7篇
  1978年   7篇
  1973年   10篇
  1972年   7篇
  1971年   7篇
  1969年   8篇
  1968年   8篇
  1966年   7篇
排序方式: 共有5161条查询结果,搜索用时 0 毫秒
1.
2.
3.
Life-history analysis of an Artemia population in a changing environment   总被引:2,自引:0,他引:2  
The Anemia monica Verrill population in Mono Lake, Californiahas two generations per year. Despite similarities in the year-to-yearlife history patterns, some important differences developedbetween 1979 and 1981. The first generation hatches from overwinteringcysts in early spring and reaches maturity by the end of May.The first-generation females reproduce ovoviviparously, givingrise to a second generation which matures between mid-July andAugust. In July, both first and second generation females beginproducing overwintering cysts. The population reaches it maximumin late summer, then declines to low numbers by November. Theabundance of the first generation in June declined from a meanof 20 000 m–2 to 2400 m–2. Despite the smaller firstgeneration, the second generation in 1980 and 1981 was at leastas abundant as in 1979. These differences are indicative ofa change in the Artemia population dynamics in Mono Lake. 1Address for correspondence: Hawaii Institute of Marine Biology,University of Hawaii, P.O. Box 1346 Kaneohe, HI 96744-1346,USA.  相似文献   
4.
5.
6.
7.
Climate change and urbanisation are among the most pervasive and rapidly growing threats to biodiversity worldwide. However, their impacts are usually considered in isolation, and interactions are rarely examined. Predicting species' responses to the combined effects of climate change and urbanisation, therefore, represents a pressing challenge in global change biology. Birds are important model taxa for exploring the impacts of both climate change and urbanisation, and their behaviour and physiology have been well studied in urban and non-urban systems. This understanding should allow interactive effects of rising temperatures and urbanisation to be inferred, yet considerations of these interactions are almost entirely lacking from empirical research. Here, we synthesise our current understanding of the potential mechanisms that could affect how species respond to the combined effects of rising temperatures and urbanisation, with a focus on avian taxa. We discuss potential interactive effects to motivate future in-depth research on this critically important, yet overlooked, aspect of global change biology. Increased temperatures are a pronounced consequence of both urbanisation (through the urban heat island effect) and climate change. The biological impact of this warming in urban and non-urban systems will likely differ in magnitude and direction when interacting with other factors that typically vary between these habitats, such as resource availability (e.g. water, food and microsites) and pollution levels. Furthermore, the nature of such interactions may differ for cities situated in different climate types, for example, tropical, arid, temperate, continental and polar. Within this article, we highlight the potential for interactive effects of climate and urban drivers on the mechanistic responses of birds, identify knowledge gaps and propose promising future research avenues. A deeper understanding of the behavioural and physiological mechanisms mediating species' responses to urbanisation and rising temperatures will provide novel insights into ecology and evolution under global change and may help better predict future population responses.  相似文献   
8.
9.
The role of glucose in ajmalicine production by Catharanthus roseus was investigated in the second stage of a two-stage batch process. Activities of tryptophan decar-boxylate (TDC) and anthranilate synthase (AS), two enzymes In the pathway leading to ajmalicine, were higher after induction with 40 g/L glucose than after induction with 60 or 80 g/L glucose. Experiments with different media containing mixtures of glucose and the nonpermeating osmotic agent xylose, and using an already induced culture as inoculum, revealed that a minimum amount of glucose is required to support ajmalicine production after enzyme induction. This requirement was not an osmotic effect. The relation between the glucose concentration and the specific ajmalicine production rate, q(p), was investigated in seven (fed-)batch cultures with constant glucose concentrations: 23, 29, 35, 53, 57, 75, and 98 g/L. In the cultures with a low glucose concentration (23, 29, and 35 g/L) the q(p) was 2.7-times higher than the cultures with 53 and 57 g/L, and almost six times higher than the cultures with a high glucose concentration (75 and 98 g/L). A glucose perturbation experiment (from 53 to 32 g/L) demonstrated that the ajmalicine production rate was adjusted without much delay. A kinetic equation is proposed for the relationship between the glucose concentration and q(p). Differences in enzyme induction and ajmalicine production at different glucose levels could not be explained by the intracellular concentrations of glucose, fructose, sucrose, or starch. (c) 1995 John Wiley & Sons Inc.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号