首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   486篇
  免费   60篇
  2023年   5篇
  2021年   8篇
  2020年   4篇
  2019年   6篇
  2018年   7篇
  2017年   7篇
  2016年   13篇
  2015年   14篇
  2014年   10篇
  2013年   17篇
  2012年   23篇
  2011年   21篇
  2010年   10篇
  2009年   13篇
  2008年   20篇
  2007年   21篇
  2006年   24篇
  2005年   13篇
  2004年   16篇
  2003年   20篇
  2002年   15篇
  2001年   26篇
  2000年   22篇
  1999年   18篇
  1998年   10篇
  1997年   4篇
  1995年   6篇
  1993年   4篇
  1991年   4篇
  1990年   7篇
  1987年   7篇
  1986年   6篇
  1982年   6篇
  1979年   8篇
  1978年   3篇
  1977年   6篇
  1976年   11篇
  1975年   5篇
  1974年   6篇
  1973年   6篇
  1972年   11篇
  1971年   8篇
  1970年   5篇
  1969年   4篇
  1968年   6篇
  1967年   4篇
  1965年   3篇
  1859年   3篇
  1857年   3篇
  1854年   3篇
排序方式: 共有546条查询结果,搜索用时 31 毫秒
21.
The mammalian target of rapamycin complex 1 (mTORC1) integrates mitogenic and stress signals to control growth and metabolism. Activation of mTORC1 by amino acids and growth factors involves recruitment of the complex to the lysosomal membrane and is further supported by lysosome distribution to the cell periphery. Here, we show that translocation of lysosomes toward the cell periphery brings mTORC1 into proximity with focal adhesions (FAs). We demonstrate that FAs constitute discrete plasma membrane hubs mediating growth factor signaling and amino acid input into the cell. FAs, as well as the translocation of lysosome-bound mTORC1 to their vicinity, contribute to both peripheral and intracellular mTORC1 activity. Conversely, lysosomal distribution to the cell periphery is dispensable for the activation of mTORC1 constitutively targeted to FAs. This study advances our understanding of spatial mTORC1 regulation by demonstrating that the localization of mTORC1 to FAs is both necessary and sufficient for its activation by growth-promoting stimuli.  相似文献   
22.
Accumulated evidence has suggested that BMP pathways play critical roles during mammalian cardiogenesis and impairment of BMP signaling may contribute to human congenital heart diseases (CHDs), which are the leading cause of infant morbidity and mortality. Alk3 encodes a BMP specific type I receptor expressed in mouse embryonic hearts. To reveal functions of Alk3 during atrioventricular (AV) cushion morphogenesis and to overcome the early lethality of Alk3(-/-) embryos, we applied a Cre/loxp approach to specifically inactivate Alk3 in the endothelium/endocardium. Our studies showed that endocardial depletion of Alk3 severely impairs epithelium-mesenchymal-transformation (EMT) in the atrioventricular canal (AVC) region; the number of mesenchymal cells formed in Tie1-Cre;Alk3(loxp/loxp) embryos was reduced to only approximately 20% of the normal level from both in vivo section studies and in vitro explant assays. We showed, for the first time, that in addition to its functions on mesenchyme formation, Alk3 is also required for the normal growth/survival of AV cushion mesenchymal cells. Functions of Alk3 are accomplished through regulating expression/activation/subcellular localization of multiple downstream genes including Smads and cell-cycle regulators. Taken together, our study supports the notion that Alk3-mediated BMP signaling in AV endocardial/mesenchymal cells plays a central role during cushion morphogenesis.  相似文献   
23.
Binocular vision requires an exquisite matching of projections from each eye to form a cohesive representation of the visual world. Eye-specific inputs are anatomically segregated, but in register in the visual thalamus, and overlap within the binocular region of primary visual cortex. Here, we show that the transmembrane protein Ten_m3 regulates the alignment of ipsilateral and contralateral projections. It is expressed in a gradient in the developing visual pathway, which is consistently highest in regions that represent dorsal visual field. Mice that lack Ten_m3 show profound abnormalities in mapping of ipsilateral, but not contralateral, projections, and exhibit pronounced deficits when performing visually mediated behavioural tasks. It is likely that the functional deficits arise from the interocular mismatch, because they are reversed by acute monocular inactivation. We conclude that Ten_m3 plays a key regulatory role in the development of aligned binocular maps, which are required for normal vision.  相似文献   
24.
25.
A key challenge in microbiome research is to predict the functionality of microbial communities based on community membership and (meta)-genomic data. As central microbiota functions are determined by bacterial community networks, it is important to gain insight into the principles that govern bacteria-bacteria interactions. Here, we focused on the growth and metabolic interactions of the Oligo-Mouse-Microbiota (OMM12) synthetic bacterial community, which is increasingly used as a model system in gut microbiome research. Using a bottom-up approach, we uncovered the directionality of strain-strain interactions in mono- and pairwise co-culture experiments as well as in community batch culture. Metabolic network reconstruction in combination with metabolomics analysis of bacterial culture supernatants provided insights into the metabolic potential and activity of the individual community members. Thereby, we could show that the OMM12 interaction network is shaped by both exploitative and interference competition in vitro in nutrient-rich culture media and demonstrate how community structure can be shifted by changing the nutritional environment. In particular, Enterococcus faecalis KB1 was identified as an important driver of community composition by affecting the abundance of several other consortium members in vitro. As a result, this study gives fundamental insight into key drivers and mechanistic basis of the OMM12 interaction network in vitro, which serves as a knowledge base for future mechanistic in vivo studies.Subject terms: Microbiome, Microbial ecology  相似文献   
26.
27.
Although alpha(2)beta(1) integrin (glycoprotein Ia/IIa) has been established as a platelet collagen receptor, its role in collagen-induced platelet activation has been controversial. Recently, it has been demonstrated that rhodocytin (also termed aggretin), a snake venom toxin purified from the venom of Calloselasma rhodostoma, induces platelet activation that can be blocked by monoclonal antibodies against alpha(2)beta(1) integrin. This finding suggested that clustering of alpha(2)beta(1) integrin by rhodocytin is sufficient to induce platelet activation and led to the hypothesis that collagen may activate platelets by a similar mechanism. In contrast to these findings, we provided evidence that rhodocytin does not bind to alpha(2)beta(1) integrin. Here we show that the Cre/loxP-mediated loss of beta(1) integrin on mouse platelets has no effect on rhodocytin-induced platelet activation, excluding an essential role of alpha(2)beta(1) integrin in this process. Furthermore, proteolytic cleavage of the 45-kDa N-terminal domain of glycoprotein (GP) Ibalpha either on normal or on beta(1)-null platelets had no significant effect on rhodocytin-induced platelet activation. Moreover, mouse platelets lacking both alpha(2)beta(1) integrin and the activating collagen receptor GPVI responded normally to rhodocytin. Finally, even after additional proteolytic removal of the 45-kDa N-terminal domain of GPIbalpha rhodocytin induced aggregation of these platelets. These results demonstrate that rhodocytin induces platelet activation by mechanisms that are fundamentally different from those induced by collagen.  相似文献   
28.
29.
The influence of olfactory receptor cell (ORC) axons from transsexually grafted antennae on the development of glomeruli in the antennal lobes (ALs), the primary olfactory centers, was studied in the moth Manduca sexta. Normally during metamorphic adult development, the pheromone-specific macroglomerular complex (MGC) forms only in the ALs of males, whereas two lateral female-specific glomeruli (LFGs) develop exclusively in females. A female AL innervated by ORC axons from a grafted male antenna developed an MGC with three glomeruli, like the MGC of a normal male AL. Conversely, a male AL innervated by ORC axons from a grafted female antenna lacked the MGC but exhibited LFGs. ORC axons from grafted male antenna terminated in the MGC-specific target area, even in cases when the antennal nerve (AN) entered the AL via an abnormal route. Within ectopic neuromas formed by ANs that had become misrouted and failed to enter the brain, male-specific axons were not organized and formed terminal branches in many areas. The results suggest the presence of guidance cues within the AL for male-specific ORC axons. Depending on the sex of the antennal innervation, glial borders formed in a pattern characteristic of the MGC or LFGs. The sex-specific number of projection neurons (PNs) in the medial group of AL neurons remained unaffected by the antennal graft, but significant changes occurred in the organization of PN arborizations. In gynandromorphic females, LFG-specific PNs extended processes into the induced MGC, whereas in gynandromorphic males, PNs became restricted to the LFGs. The results indicate that male-and female-specific ORC axons play important roles in determining the position, anatomical features, and innervation of sexually dimorphic glomeruli.  相似文献   
30.
The glycoprotein hormone Erythropoietin (EPO) stimulates red cell production and maturation. EPO is produced by the kidneys and the fetal liver in response to hypoxia (HOX). Recently, EPO expression has also been observed in the central nervous system where it may be neuroprotective. It remained unclear, however, whether EPO is expressed in the peripheral nervous system and, if so, whether a neuronal phenotype is required for its regulation. Herein, we report that EPO expression was induced by HOX and a HOX mimetic in two cell lines derived from neuroblastoma (NB), a tumor of the peripheral nervous system. Both cell lines with inducible EPO expression, SH-SY5Y and Kelly cells, expressed typical neuronal markers like neuropeptide Y (NPY), growth-associated protein-43 (GAP-43), and neuron-specific enolase (ENO). NB cells with a more epithelial phenotype like SH-SHEP and LAN-5 did not show HOX inducible EPO gene regulation. Still, oxygen sensing and up-regulation of hypoxia-inducible factor-1 (HIF-1) were intact in all cell lines. We found that CpG methylation of the HIF binding site (HBS) in the EPO gene 3' enhancer was only present in the SH-SHEP and LAN-5 cells but not in SH-SY5Y and Kelly cells with regulated EPO expression. The addition of recombinant EPO to all NB cells, both under normoxic and hypoxic conditions, had no effect on cell proliferation. We conclude that the ability to respond to HOX with an increase in EPO expression in human NB may depend on CpG methylation and the differentiation status of these embryonic tumor cells but does not affect the proliferative characteristics of the cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号