首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   18篇
  2021年   3篇
  2020年   4篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   4篇
  2014年   7篇
  2013年   5篇
  2012年   12篇
  2011年   10篇
  2010年   9篇
  2009年   5篇
  2008年   13篇
  2007年   5篇
  2006年   7篇
  2005年   5篇
  2004年   7篇
  2003年   5篇
  2002年   15篇
  2001年   10篇
  2000年   6篇
  1999年   11篇
  1997年   3篇
  1996年   4篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1983年   2篇
  1981年   3篇
  1980年   3篇
  1978年   2篇
  1977年   1篇
  1976年   4篇
  1975年   6篇
  1973年   4篇
  1972年   1篇
  1971年   5篇
  1970年   6篇
  1969年   2篇
  1968年   3篇
  1967年   6篇
  1965年   1篇
  1962年   1篇
  1957年   1篇
  1954年   1篇
排序方式: 共有239条查询结果,搜索用时 93 毫秒
141.
The ammonia-oxidizing microbial community colonizing clay tiles in flow channels changed in favor of ammonia-oxidizing bacteria during a 12-week incubation period even at originally high ratios of ammonia-oxidizing archaea to ammonia-oxidizing bacteria (AOB). AOB predominance was established more rapidly in flow channels incubated at 350 μM NH(4)(+) than in those incubated at 50 or 20 μM NH(4)(+). Biofilm-associated potential nitrification activity was first detected after 28 days and was positively correlated with bacterial but not archaeal amoA gene copy numbers.  相似文献   
142.
143.
144.
145.
The emission of methane (1.3 mmol of CH4 m−2 day−1), precursors of methanogenesis, and the methanogenic microorganisms of acidic bog peat (pH 4.4) from a moderately reduced forest site were investigated by in situ measurements, microcosm incubations, and cultivation methods, respectively. Bog peat produced CH4 (0.4 to 1.7 μmol g [dry wt] of soil−1 day−1) under anoxic conditions. At in situ pH, supplemental H2-CO2, ethanol, and 1-propanol all increased CH4 production rates while formate, acetate, propionate, and butyrate inhibited the production of CH4; methanol had no effect. H2-dependent acetogenesis occurred in H2-CO2-supplemented bog peat only after extended incubation periods. Nonsupplemented bog peat initially produced small amounts of H2 that were subsequently consumed. The accumulation of H2 was stimulated by ethanol and 1-propanol or by inhibiting methanogenesis with bromoethanesulfonate, and the consumption of ethanol was inhibited by large amounts of H2; these results collectively indicated that ethanol- or 1-propanol-utilizing bacteria were trophically associated with H2-utilizing methanogens. A total of 109 anaerobes and 107 hydrogenotrophic methanogens per g (dry weight) of bog peat were enumerated by cultivation techniques. A stable methanogenic enrichment was obtained with an acidic, H2-CO2-supplemented, fatty acid-enriched defined medium. CH4 production rates by the enrichment were similar at pH 4.5 and 6.5, and acetate inhibited methanogenesis at pH 4.5 but not at pH 6.5. A total of 27 different archaeal 16S rRNA gene sequences indicative of Methanobacteriaceae, Methanomicrobiales, and Methanosarcinaceae were retrieved from the highest CH4-positive serial dilutions of bog peat and methanogenic enrichments. A total of 10 bacterial 16S rRNA gene sequences were also retrieved from the same dilutions and enrichments and were indicative of bacteria that might be responsible for the production of H2 that could be used by hydrogenotrophic methanogens. These results indicated that in this acidic bog peat, (i) H2 is an important substrate for acid-tolerant methanogens, (ii) interspecies hydrogen transfer is involved in the degradation of organic carbon, (iii) the accumulation of protonated volatile fatty acids inhibits methanogenesis, and (iv) methanogenesis might be due to the activities of methanogens that are phylogenetic members of the Methanobacteriaceae, Methanomicrobiales, and Methanosarcinaceae.  相似文献   
146.
Moran  L. B.  Kösel  S.  Spitzer  C.  Schwaiger  F. W.  Riess  O.  Kreutzberg  G. W.  Graeber  M. B. 《Brain Cell Biology》2001,30(6):515-521
The discovery that missense mutations in the alpha-synuclein gene represent a rare genetic cause of Parkinson's disease (PD) has had significant impact on the development of research into neurodegenerative disorders. It is becoming increasingly clear that alpha-synuclein plays a central role in the pathological process, which causes Lewy body formation and neurodegeneration in PD. Importantly, there is evidence to suggest that mutated alpha-synuclein is toxic to both nerve cells and glia. However, the regulation and function of wild-type alpha-synuclein are as yet ill defined. Using the facial nerve axotomy model, we have addressed the question whether the expression of alpha-synuclein in nerve cells may change in response to injury. We were particularly interested in testing the hypothesis that the severity of neuronal injury had an effect on alpha-synuclein metabolism. Facial nerve cut and crush, respectively, were performed in adult rats where normal facial motoneurones do not express alpha-synuclein. Following axotomy, a subset of facial motoneurones newly expressed high levels of alpha-synuclein immunoreactivity in their cell body and, occasionally, their nucleus. Significantly more nerve cells were labelled following facial nerve transection than following facial nerve crush. Confocal microscopy revealed a granular pattern of alpha-synuclein aggregation in degenerating nerve cells. Interestingly, the observed cell death phenotype was clearly non-apoptotic and developed over days or weeks rather than hours. Thus, axotomy of adult rat facial motoneurones triggers de novo expression of alpha-synuclein and this expression is associated with a non-apoptotic, slow form a neurodegeneration. In addition, the extent of alpha-synuclein expression is related to the severity of neuronal injury.  相似文献   
147.
Tumor cell invasion is the most critical step of metastasis. Determination of the mode of invasion within the particular tumor is critical for effective cancer treatment. Protease-independent amoeboid mode of invasion has been described in carcinoma cells and more recently in sarcoma cells on treatment with protease inhibitors. To analyze invasive behavior, we compared highly metastatic sarcoma cells with parental nonmetastatic cells. The metastatic cells exhibited a functional up-regulation of Rho/ROCK signaling and, similarly to carcinoma cells, an amoeboid mode of invasion. Using confocal and traction force microscopy, we showed that an up-regulation of Rho/ROCK signaling leads to increased cytoskeletal dynamics, myosin light chain localization, and increased tractions at the leading edge of the cells and that all of these contributed to increased cell invasiveness in a three-dimensional collagen matrix. We conclude that cells of mesenchymal origin can use the amoeboid nonmesenchymal mode of invasion as their primary invading mechanism and show the dependence of ROCK-mediated amoeboid mode of invasion on the increased capacity of cells to generate force.  相似文献   
148.
Peatlands are sources of relevant greenhouse gases such as CH4, but the temporal presence of Fe(III) may inhibit methanogenesis. Because excess of carbon during the vegetation period might allow concomitant electron-accepting processes, Fe(III) reduction and methanogenesis were studied during an annual season in an acidic fen. The upper peat layer displayed the highest Fe(II)- and CH4-forming activities. The rates of Fe(II) formation did not change during the year and methanogenesis started mostly when Fe(II) formation reached a plateau. Most of the Fe(III) pool seemed to be bioavailable, and addition of nitrilotriacetic acid stimulated only light Fe(II) formation, whereas EDTA and anthraquinone-2,6-disulfonate had no effect. In the presence of an inhibitor for methanogenesis (sodium 2-bromoethanesulfonate), Fe(II) formation was inhibited to 45%. Addition of Fe(III) during ongoing methanogenesis led only to a partial inhibition of CH4 formation. The proportion of acetoclastic methanogenesis varied between 42% and 90%, but no trend with time was observed. The number of acetate-, ethanol- or lactate-utilizing Fe(III) reducers approximated 10(5)-10(6) cells g (fresh wt peat)(-1). Fermentative glucose-utilizing Fe(III)-reducers were most abundant. Our results suggest that (1) methanogens used Fe(III) as an electron acceptor and (2) fermenting bacteria, which do not compete with methanogens for common electron donors, dominated the reduction of Fe(III) in this fen.  相似文献   
149.
150.
Retroviral integrase catalyzes integration of double-stranded viral DNA into the host chromosome by a process that has become an attractive target for drug design. In the 3' processing reaction, two nucleotides are specifically cleaved from both 3' ends of viral DNA yielding a 5' phosphorylated dimer (pGT). The resulting recessed 3' hydroxy groups of adenosine provide the attachment sites to the host DNA in the strand transfer reaction. Here, we studied the effect of modified double-stranded oligonucleotides mimicking both the unprocessed (21-mer oligonucleotides) and 3' processed (19-mer oligonucleotides) U5 termini of proviral DNA on activities of HIV-1 integrase in vitro. The inhibitions of 3' processing and strand transfer reactions were studied using 21-mer oligonucleotides containing isopolar, nonisosteric, both conformationally flexible and restricted phosphonate internucleotide linkages between the conservative AG of the sequence CAGT, and using a 21-mer oligonucleotide containing 2'-fluoroarabinofuranosyladenine. All modified 21-mer oligonucleotides competitively inhibited both reactions mediated by HIV-1 integrase with nanomolar IC50 values. Our studies with 19-mer oligonucleotides showed that modifications of the 3' hydroxyl significantly reduced the strand transfer reaction. The inhibition of integrase with 19-mer oligonucleotides terminated by (S)-9-(3-hydroxy-2-phosphonomethoxypropyl)adenine, 9-(2-phosphonomethoxyethyl)adenine, and adenosine showed that proper orientation of the 3' OH group and the presence of the furanose ring of adenosine significantly influence the strand transfer reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号