首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   280篇
  免费   23篇
  303篇
  2023年   1篇
  2022年   1篇
  2021年   8篇
  2020年   5篇
  2019年   3篇
  2018年   1篇
  2017年   7篇
  2016年   1篇
  2015年   18篇
  2014年   9篇
  2013年   10篇
  2012年   22篇
  2011年   15篇
  2010年   13篇
  2009年   17篇
  2008年   16篇
  2007年   17篇
  2006年   16篇
  2005年   10篇
  2004年   20篇
  2003年   14篇
  2002年   15篇
  2001年   8篇
  2000年   9篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1996年   5篇
  1995年   1篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
排序方式: 共有303条查询结果,搜索用时 0 毫秒
21.
The enzyme prephenate dehydratase (PDT) converts prephenate to phenylpyruvate in L-phenylalanine biosynthesis. PDT is allosterically regulated by L-Phe and other amino acids. We report the first crystal structures of PDT from Staphylococcus aureus in a relaxed (R) state and PDT from Chlorobium tepidum in a tense (T) state. The two enzymes show low sequence identity (27.3%) but the same prototypic architecture and domain organization. Both enzymes are tetramers (dimer of dimers) in crystal and solution while a PDT dimer can be regarded as a basic catalytic unit. The N-terminal PDT domain consists of two similar subdomains with a cleft in between, which hosts the highly conserved active site. In one PDT dimer two clefts are aligned to form an extended active site across the dimer interface. Similarly at the interface two ACT regulatory domains create two highly conserved pockets. Upon binding of the L-Phe inside the pockets, PDT transits from an open to a closed conformation.  相似文献   
22.
The X-ray structures of human aldose reductase holoenzyme in complex with the inhibitors Fidarestat (SNK-860) and Minalrestat (WAY-509) were determined at atomic resolutions of 0.92 A and 1.1 A, respectively. The hydantoin and succinimide moieties of the inhibitors interacted with the conserved anion-binding site located between the nicotinamide ring of the coenzyme and active site residues Tyr48, His110, and Trp111. Minalrestat's hydrophobic isoquinoline ring was bound in an adjacent pocket lined by residues Trp20, Phe122, and Trp219, with the bromo-fluorobenzyl group inside the "specificity" pocket. The interactions between Minalrestat's bromo-fluorobenzyl group and the enzyme include the stacking against the side-chain of Trp111 as well as hydrogen bonding distances with residues Leu300 and Thr113. The carbamoyl group in Fidarestat formed a hydrogen bond with the main-chain nitrogen atom of Leu300. The atomic resolution refinement allowed the positioning of hydrogen atoms and accurate determination of bond lengths of the inhibitors, coenzyme NADP+ and active-site residue His110. The 1'-position nitrogen atom in the hydantoin and succinimide moieties of Fidarestat and Minalrestat, respectively, form a hydrogen bond with the Nepsilon2 atom of His 110. For Fidarestat, the electron density indicated two possible positions for the H-atom in this bond. Furthermore, both native and anomalous difference maps indicated the replacement of a water molecule linked to His110 by a Cl-ion. These observations suggest a mechanism in which Fidarestat is bound protonated and becomes negatively charged by donating the proton to His110, which may have important implications on drug design.  相似文献   
23.
24.
We tested the general applicability of in situ proteolysis to form protein crystals suitable for structure determination by adding a protease (chymotrypsin or trypsin) digestion step to crystallization trials of 55 bacterial and 14 human proteins that had proven recalcitrant to our best efforts at crystallization or structure determination. This is a work in progress; so far we determined structures of 9 bacterial proteins and the human aminoimidazole ribonucleotide synthetase (AIRS) domain.  相似文献   
25.
26.
Tau aggregation into ordered assemblies causes neurodegenerative tauopathies. We previously reported that tau monomer exists in either inert (Mi) or seed-competent (Ms) conformational ensembles and that Ms encodes strains, that is, unique, self-replicating, biologically active assemblies. It is unknown if disease begins with Ms formation followed by fibril assembly or if Ms derives from fibrils and is therefore an epiphenomenon. Here, we studied a tauopathy mouse model (PS19) that expresses full-length mutant human (1N4R) tau (P301S). Insoluble tau seeding activity appeared at 2 months of age and insoluble tau protein assemblies by immunoblot at 3 months. Tau monomer from mice aged 1 to 6 weeks, purified using size-exclusion chromatography, contained soluble seeding activity at 4 weeks, before insoluble material or larger assemblies were observed, with assemblies ranging from n = 1 to 3 tau units. By 5 to 6 weeks, large soluble assemblies had formed. This indicated that the first detectable pathological forms of tau were in fact Ms. We next examined posttranslational modifications of tau monomer from 1 to 6 weeks. We detected no phosphorylation unique to Ms in PS19 or human Alzheimer’s disease brains. We conclude that tauopathy begins with formation of the Ms monomer, whose activity is phosphorylation independent. Ms then self assembles to form oligomers before it forms insoluble fibrils. The conversion of tau monomer from Mi to Ms thus constitutes the first detectable step in the initiation of tauopathy in this mouse model, with obvious implications for the origins of tauopathy in humans.  相似文献   
27.
Chromosome studies have been conducted on the long-term callus cultures of threeAllium species:A. porrum (2n=32),A. tuberosum (2n=32) andA. fistulosum (2n=16). In cultures ofA. fistulosum several interesting cytological abnormalities were observed. They included direct elimination of chromatin from nuclei, multiple chromosome fusions and formation of polycentric and megachromosomes. The rate of abnormalities increased with the time of culture. Allium fistulosum may provide an excellent model system to analyse cytogenetic and molecular aspects of callus-induced genomic changes and, thus, somaclonal variation.  相似文献   
28.
29.
BACKGROUND: The rpoS, nlpD, pcm, and surE genes are among many whose expression is induced during the stationary phase of bacterial growth. rpoS codes for the stationary-phase RNA polymerase sigma subunit, and nlpD codes for a lipoprotein. The pcm gene product repairs damaged proteins by converting the atypical isoaspartyl residues back to L-aspartyls. The physiological and biochemical functions of surE are unknown, but its importance in stress is supported by the duplication of the surE gene in E. coli subjected to high-temperature growth. The pcm and surE genes are highly conserved in bacteria, archaea, and plants. RESULTS: The structure of SurE from Thermotoga maritima was determined at 2.0 A. The SurE monomer is composed of two domains; a conserved N-terminal domain, a Rossman fold, and a C-terminal oligomerization domain, a new fold. Monomers form a dimer that assembles into a tetramer. Biochemical analysis suggests that SurE is an acid phosphatase, with an optimum pH of 5.5-6.2. The active site was identified in the N-terminal domain through analysis of conserved residues. Structure-based site-directed point mutations abolished phosphatase activity. T. maritima SurE intra- and intersubunit salt bridges were identified that may explain the SurE thermostability. CONCLUSIONS: The structure of SurE provided information about the protein's fold, oligomeric state, and active site. The protein possessed magnesium-dependent acid phosphatase activity, but the physiologically relevant substrate(s) remains to be identified. The importance of three of the assigned active site residues in catalysis was confirmed by site-directed mutagenesis.  相似文献   
30.
Surface lysine methylation (SLM) is a technique for improving the rate of success of protein crystallization by chemically methylating lysine residues. The exact mechanism by which SLM enhances crystallization is still not clear. To study these mechanisms, and to analyze the conditions where SLM will provide the optimal benefits for rescuing failed crystallization experiments, we compared 40 protein structures containing N,N-dimethyl-lysine (dmLys) to a nonredundant set of 18,972 nonmethylated structures from the PDB. By measuring the relative frequency of intermolecular contacts (where contacts are defined as interactions between the residues in proximity with a distance of 3.5 Å or less) of basic residues in the methylated versus nonmethylated sets, dmLys-Glu contacts are seen more frequently than Lys-Glu contacts. Based on observation of the 10 proteins with both native and methylated structures, we propose that the increased rate of contact for dmLys-Glu is due to both a slight increase in the number of amine-carboxyl H-bonds and to the formation of methyl C–H···O interactions. By comparing the relative contact frequencies of dmLys with other residues, the mechanism by which methylation of lysines improves the formation of crystal contacts appears to be similar to that of Lys to Arg mutation. Moreover, analysis of methylated structures with the surface entropy reduction (SER) prediction server suggests that in many cases SLM of predicted SER sites may contribute to improved crystallization. Thus, tools that analyze protein sequences and mark residues for SER mutation may identify proteins with good candidate sites for SLM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号