首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   423篇
  免费   3篇
  国内免费   1篇
  427篇
  2022年   4篇
  2021年   6篇
  2019年   2篇
  2018年   2篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2011年   2篇
  2010年   12篇
  2009年   52篇
  2008年   21篇
  2007年   14篇
  2006年   14篇
  2005年   17篇
  2004年   32篇
  2003年   24篇
  2002年   24篇
  2001年   19篇
  2000年   10篇
  1999年   14篇
  1998年   15篇
  1997年   15篇
  1996年   17篇
  1995年   14篇
  1994年   8篇
  1993年   16篇
  1992年   12篇
  1991年   5篇
  1990年   12篇
  1989年   4篇
  1988年   7篇
  1987年   3篇
  1986年   7篇
  1985年   5篇
  1984年   7篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有427条查询结果,搜索用时 15 毫秒
351.
Maize(Zea mays) root system architecture(RSA)mediates the key functions of plant anchorage and acquisition of nutrients and water. In this study,a set of 204 recombinant inbred lines(RILs) was derived from the widely adapted Chinese hybrid ZD958(Zheng58 Chang7-2),genotyped by sequencing(GBS) and evaluated as seedlings for 24 RSA related traits divided into primary,seminal and total root classes. Signi ficant differences between the means of the parental phenotypes were detected for 18 traits,and extensive transgressive segregation in the RIL population was observed for all traits. Moderate to strong relationships among the traits were discovered. A total of 62 quantitative trait loci(QTL) were identi fied that individually explained from1.6% to 11.6%(total root dry weight/total seedling shoot dry weight) of the phenotypic variation. Eighteen,24 and 20 QTL were identi fied for primary,seminal and total root classes of traits,respectively. We found hotspots of 5,3,4 and 12 QTL in maize chromosome bins 2.06,3.02-03,9.02-04,and 9.05-06,respectively,implicating the presence of root gene clusters or pleiotropic effects. These results characterized the phenotypic variation and genetic architecture of seedling RSA in a population derived from a successful maize hybrid.  相似文献   
352.
Enteropathogenic Escherichia coli (EPEC) is a diarrhoeal pathogen that adheres to epithelial cells of the small intestine and uses a type III secretion system to inject effector proteins into host cells. EPEC infection leads to disruption of host intestinal tight junctions that are important for maintaining intestinal barrier function. This disruption is dependent on the bacterial type III secretion system, as well as the translocated effectors EspF and Map. Here we show that a third type III translocated bacterial effector protein, NleA, is also involved in tight junction disruption during EPEC infection. Using the drug Brefeldin A, we demonstrate that the effect of NleA on tight junction integrity is related to its inhibition of host cell protein trafficking through COPII-dependent pathways. These results suggest that NleA's striking effect on virulence is mediated, at least in part, via its role in disruption of intestinal barrier function.  相似文献   
353.
A new disease resistance locus in Arabidopsis, RPS3 , was identified using a previously cloned avirulence gene from a non- Arabidopsis pathogen. The avrB avirulence gene from the soybean pathogen Pseudomonas syringae pv. glycinea was transferred into a P. syringae pv. tomato strain that is virulent on Arabidopsis , and conversion to avirulence was assayed on Arabidopsis plants. The avrB gene had avirulence activity on most, but not all, Arabidopsis ecotypes. Of 53 ecotypes examined, 45 were resistant to a P. syringae pv. tomato strain carrying avrB , and eight were susceptible. The inheritance of this resistance was examined using crosses between the resistant ecotype Col-0 and the susceptible ecotype Bla-2. In F2 plants from this cross, the ratio of resistant:susceptible plants was approximately 3:1, indicating that resistance to P. syringae expressing avrB is determined by a single dominant locus in ecotype Col-0, which we have designated RPS3 . Using RFLP analysis, RPS3 was mapped to chromosome 3, adjacent to markers M583 and G4523, and ≤ 1 cM from another disease resistance locus, RPM1 . In soybean, resistance to P. syringae strains that carry avrB is controlled by the locus RPG1 . Thus, RPG1 and RPS3 both confer avrB -specific disease resistance, suggesting that these genes may be homologs.  相似文献   
354.
Comparison was made of the specific activities of whole extracellular soluble protein (EP) and extracellular vesicle (ECV)-associated trypsin-like protease (TLP) activity from batch cultures of Bacteroides gingivalis W50. Rapid loss of activity occurred when these fractions were maintained at 37 degrees C in the presence of DTT. Residual levels of activity were detected after incubation of ECV and EP for up to 8 days under non-reducing conditions. Rates of activity loss in EP and ECV were similar. Mixtures of EP and ECV, in the same proportions as found in the culture supernatant showed neither depression nor elevation of total activity from the expected compound activities of the two separate fractions.  相似文献   
355.
356.
U-rich tracts enhance 3' splice site recognition in plant nuclei   总被引:5,自引:1,他引:4  
The process of 5' and 3' splice site definition in plant pre-mRNA splicing differs from that in mammals and yeast. In mammals, splice sites are chosen by their complementarity to U1 snRNA surrounding the /GU at the 5' splice site and by the strength of the pyrimidine tract preceding the AG/ at the 3' splice site; in plants, the 3' intron boundary is defined in a position-dependent manner relative to AU-rich elements within the intron. To determine if uridines are utilized to any extent in plant 3' splice site recognition, uridines in the region preceding the normal (−1) 3' splice site of pea rbcS3A intron 1 were replaced with adenosines. This mutant activates two cryptic 3' splice sites (+62, +95) in the downstream exon, indicating that the uridines in the region immediately preceding the normal (−1) site are essential for recognition. Placement of different length uridine tracts upstream from the cryptic +62 site indicated that a cryptic exonic 3' splice site containing 14 or 10 uridine tracts with a G at −4 can effectively outcompete the normal 3' splice site containing an eight uridine tract with a U at −4. Substitutions at the −4 position demonstrated that the identity of the nucleotide at this position greatly affects 3' splice site selection. It has been concluded that several factors affect competition between these 3' splice sites. These factors include the position of the AU transition point, the strength of the uridine tract immediately preceding the 3' terminal CAG/ and the identity of nucleotide −4.  相似文献   
357.
358.
Background. Helicobacter pylori produces Hpn, a 60-amino acid, histidine-rich protein that avidly binds nickel and zinc ions, and NixA, a high-affinity nickel transporter in the cytoplasmic membrane. We tested the hypothesis that Hpn and NixA govern susceptibility to metal ions in H. pylori. Materials and Methods. Hpn-negative mutants of four H. pylori strains were constructed by standard allelic exchange techniques to yield isogenic Hpn+/Hpn-deficient pairs. A metal concentration that inhibited growth by 50% (IC50) was calculated for Ni2+, Zn2+, Cu2+, and Co2+ by comparing OD600 of cultures in metal-supplemented and control media. Results. Among all four pairs of isogenic strains, the tolerance for Ni2+ was reduced significantly (p < .001) in the Hpn mutants; the mean IC50 value for wild-type strains was 1.9 mM; for the mutant, it was 0.8 mM. In  contrast, growth inhibition by Zn2+ was identical within the fours pairs, as was Cu2+ and Co2+ tolerance in one pair tested. We also found that deletion of the hpn gene increases susceptibility to therapeutic forms of bismuth by testing a mutant and wild-type pair with ranitidine bismuth citrate, bismuth citrate, and four antibiotics. Minimal inhibitory concentrations of ranitidine bismuth citrate dropped from 9.2 to 2.3 μg/ml, and those of bismuth citrate dropped from 7.4 to 3.2 μg/ml (p < .05 for both comparisons), while susceptibility to the antibiotics was unaffected. Disruption of the nixA gene encoding the specific Ni2+ transport protein of H. pylori did not change susceptibility to bismuth. Conclusion. We concluded that bacteria lacking Hpn, cultured in vitro, are more susceptible than is the wild type to bismuth and Ni2+.  相似文献   
359.
Protein SRP19 is an important component of the signal recognition particle (SRP) as it promotes assembly of protein SRP54 with SRP RNA and recognizes a tetranucleotide loop. Structural features and RNA binding activities of SRP19 of the hyperthermophilic archaeon Archaeoglobus fulgidus were investigated. An updated alignment of SRP19 sequences predicted three conserved regions and two alpha-helices. With Af-SRP RNA the Af-SRP54 protein assembled into an A. fulgidus SRP which remained intact for many hours. Stable complexes were formed between Af-SRP19 and truncated SRP RNAs, including a 36-residue fragment representing helix 6 of A. fulgidus SRP RNA.  相似文献   
360.
The effects of Cl- and Ca2+ were studied on the specific binding of L-[3H]glutamate to multiple sites on rat hippocampal synaptic membranes. Quisqualate (5 microM) or DL-2-amino-4-phosphonobutyrate (2-APB) (300 microM) was used to discriminate two previously identified classes of binding sites. Saturation isotherms and displacement curves constructed under different ionic conditions suggested that the effects of Cl- and Ca2+ could best be explained by postulating the existence of three major binding site populations in this preparation rather than two. The binding of L-glutamate to Glu A sites exhibits an absolute dependence on Cl-, and Ca2+ markedly increases the maximum density of these sites. Glu A sites bind quisqualate and 2-APB with relatively high affinity. Cl- (47 mM) more than doubles the maximum density of Glu B sites, but Ca2+ appears to have no effect. Glu B sites can be discriminated from the other classes by their relatively low affinity for quisqualate and 2-APB. There is reason to think that the Glu B population is heterogeneous. The novel Glu C population can be virtually selectively labeled by exposing 2-APB-sensitive binding sites to radioligand in Tris-HOAc buffer with Ca2+. Binding of L-[3H]glutamate to these sites is enhanced by both Cl- and Ca2+, but requires neither ion. Ca2+ appears to increase both the affinity of Glu C sites for L-glutamate and their maximum binding site density. In the presence of Ca2+ and Cl-, Glu C sites bind the radioligand with micromolar affinity (KD approximately 2 microM) and high capacity (Bmax approximately 160 pmol/mg protein).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号