首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6524篇
  免费   515篇
  国内免费   3篇
  2022年   43篇
  2021年   69篇
  2020年   59篇
  2019年   53篇
  2018年   95篇
  2017年   76篇
  2016年   124篇
  2015年   230篇
  2014年   271篇
  2013年   306篇
  2012年   450篇
  2011年   390篇
  2010年   278篇
  2009年   263篇
  2008年   363篇
  2007年   376篇
  2006年   353篇
  2005年   342篇
  2004年   328篇
  2003年   328篇
  2002年   314篇
  2001年   105篇
  2000年   63篇
  1999年   94篇
  1998年   112篇
  1997年   70篇
  1996年   67篇
  1995年   82篇
  1994年   80篇
  1993年   80篇
  1992年   70篇
  1991年   52篇
  1990年   64篇
  1989年   44篇
  1988年   55篇
  1987年   46篇
  1986年   48篇
  1985年   48篇
  1984年   59篇
  1983年   45篇
  1982年   43篇
  1981年   39篇
  1980年   46篇
  1979年   41篇
  1978年   40篇
  1977年   32篇
  1974年   38篇
  1972年   29篇
  1970年   26篇
  1969年   31篇
排序方式: 共有7042条查询结果,搜索用时 15 毫秒
91.
Determination of the pressure in the water-conducting vessels of intactNicotiana rustica L. plants showed that the pressure probe technique gave less-negative values than the Scholander-bomb method. Even though absolute values of the order of −0.1 MPa could be directly recorded in the xylem by means of the pressure probe, pressures between zero and atmospheric were also frequently found. The data obtained by the pressure probe for excised leaves showed that the Scholander bomb apparently did not read the actual tension in the xylem vessles ofNicotiana plants. The possibility that the pressure probe gave false readings was excluded by several experimental controls. In addition, cavitation and leaks either during the insertion of the microcapillary of the pressure probe, or else during the measurements were easily recognized when they occurred because of the sudden increase of the absolute xylem tension to that of water vapour or to atmospheric, respectively. Tension values of the same order could also be measured by means of the pressure probe in the xylem vessels of pieces of stem cut from leaves and roots under water and clamped at both ends. The magnitude of the absolute tension depended on the osmolarity of the bathing solution which was adjusted by addition of appropriate concentrations of polyethylene glycol. Partial and uniform pressurisation of plant tissues or organs, or of entire plants (by means of the Scholander bomb or of a hyperbaric chamber, respectively) and simultaneous recording of the xylem tension using the pressure probe showed that a 1∶1 response in xylem pressure only occurred under a few circumstances. A 1∶1 response required that the xylem vessels were in direct contact with an external water reservoir and/or that the tissue was (pre-)infiltrated with water. Corresponding pressure-probe measurements in isolated vascular bundles ofPlantago major L. orP. lanceolata L. plants attached to a Hepp-type osmometer indicated that the magnitude of the tension in the xylem vessels was determined by the external osmotic pressure of the reservoir. These and other experiments, as well as analysis of the data using classical thermodynamics, indicated that the turgor and the internal osmotic pressure of the accessory cells along the xylem vessels play an important role in the maintenance of a constant xylem tension. This conclusion is consistent with the cohesion theory. In agreement with the literature (P.E. Weatherley, 1976, Philos. Trans. R. Soc. London Ser. B23, 435–444; 1982, Encyclopedia of plant physiology, vol. 12B, 79-109), it was found that the tension in the xylem of intact plants under normal and elevated ambient pressure (as measured with the pressure probe) under quasi-stationary conditions was independent of the transpiration rate over a large range, indicating that the conductance of the flow path must be flow-dependent.  相似文献   
92.
A chemiluminescent assay for hepatitis-B surface antigen is described which used an isoluminol derivative as the label. The assay is precise intra-assay CV, 1.96-2.45%; inter-assay CV, 5.26-8.11% and has a lower detection limit for hepatitis-B surface antigen of 1.3U/I.  相似文献   
93.
High mutant frequencies indicated that the wild-type strains of Pichia stipitis are haploid. Sporulation ability of these clones pointed to a homothallic life cycle. Mating was induced by cultivation under nutritionally poor conditions on malt extract medium. Conjugation was followed immediately by sporulation. However, hybrids could be rescued by transferring the nascent zygotes to complete medium before meiosis had started. Under rich nutritional conditions, hybrids were mitotically stable and did not sporulate. The segregation pattern of auxotrophic markers of diploid zygotes indicated regular meiosis, although asci contained preferentially spore dyads. Received: 29 February 1996 / Accepted: 29 March 1996  相似文献   
94.
The light-induced induction of components of non-photochemical quenching of chlorophyll fluorescence which are distinguished by different rates of dark relaxation (qNf, rapidly relaxing and qNs, slowly relaxing or not relaxing at all in the presence brief saturating light pulses which interrupt darkness at low frequencies) was studied in leaves of spinach.After dark adaptation of the leaves, a fast relaxing component developed in low light only after a lag phase. Quenching increased towards a maximum with increasing photon flux density. This fast component of quenching was identified as energy-dependent quenching qE. It required formation of an appreciable transthylakoid pH and was insignificant when darkened spinach leaves received 1 s pulses of light every 30 s even though zeaxanthin was formed from violaxanthin under these conditions.Another quenching component termed qNs developed in low light without a lag phase. It was not dependent on a transthylakoid pH gradient, decayed exponentially with a long half time of relaxation and was about 20% of total quenching irrespective of light intensity. When darkened leaves were flashed at frequencies higher than 0.004 Hz with 1 s light pulses, this quenching also appeared. Its extent was very considerable, and it did not require formation of zeaxanthin. Relaxation was accelerated by far-red light, and this acceleration was abolished by NaF.We suggest that qNs is the result of a so-called state transition, in which LHC II moves after its phosphorylation from fluorescent PS II to nonfluorescent PS I. This state transition was capable of decreasing in darkened leaves the potential maximum quantum efficiency of electron flow through Photosystem II by about 20%.Abbreviations PFD photon flux density - PS photosystem  相似文献   
95.
96.
Leaves of Kalanchoë daigremontiana Hamet et Perr. at a photon flux density (PFD) above 220 mol·m–2s–1 (400–700 nm) or at leaf temperatures above 27.0 °C showed a rapid loss of rhythmicity, and a more or less pronounced damping-out of the endogenous circadian rhythm of CO2 exchange under continuous illumination. This rhythm was reinitiated after reduction of the PFD by 90–120 mol·m–2·s–1 or reduction of leaf temperature by 3.5–11.0 °C under otherwise unchanged external conditions. The reduction in the magnitude of the external control parameter of the Crassulacean acid metabolism (CAM) rhythm (i.e. PFD or leaf temperature) set the phase of the new rhythm. The maxima of CO2 uptake occurred about 5, 28, 51, 75 h after the reduction. Simulations with a CAM model under comparable conditions showed a similar behaviour. The influence of temperature on the endogenous CAM rhythm observed in K. daigremontiana in vivo could be simulated by incorporating into the model temperature-dependent switch modes for passive efflux of malate from the vacuole to the cytoplasm. Thus, the model indicates that tonoplast function plays an important role in regulation of the endogenous CAM rhythm in K. daigremontiana.Abbreviations CAM Crassulacean acid metabolism - PAR photosynthetically active radiation - PFD photon flux density This work was supported by a grant to F.B. and U.L. from Teilprojekt B5 in the Sonderforschungsbereich 199 of the Deutsche Forschungsgemeinschaft (Bonn, Germany) and by a grant to T. E. E. G. from the Sudienstiftung des deutschen Volkes (Bonn, Germany). Erika Ball is thanked for processing of time-course data for the analysis of Fourier spectra.  相似文献   
97.
Atmospheric ammonia (NH3) from various anthropogenic sources has become a serious problem for natural vegetation. Ammonia not only causes changes in plant nitrogen metabolism, but also affects the acid-base balance of plants. Using the pH-sensitive fluorescent dyes pyranine and esculin, cytosolic and vacuolar pH changes were measured in leaves of C3 and C4 plants exposed for brief periods to concentrations of NH3 in air ranging from 1.33 to 8.29 mol NH3 · mol-1 gas (0.94–5.86 mg · m-3). After a lag phase, uptake of NH3 from air at a rate of 200 nmol NH3 · m - 2 leaf area · s- 1 into leaves of Zea mays L. increased pyranine fluorescence indicating cytosolic alkalinisation. The increase was much larger in the dark than in the light. In illuminated leaves of the C3 plant Pelargonium zonale L. and the C4 plants Z. mays and Amaranthus caudatus L., NH3-dependent cytosolic alkalinisation was particularly pronounced when CO2 was supplied at very low levels (16 or 20 mol CO2 · mol- 1 gas, containing 210 mmol O2 · mol- 1 gas). An increase in esculin fluorescence, which was smaller than that of pyranine, was indicative of trapping of some of the NH3 in the vacuoles of leaves of Spinacia oleracea L. and Z. mays. Photosynthesis and transpiration remained unchanged during exposure of illuminated leaves to NH3, yielding an influx of 200 nmol NH3 · m-2 leaf area · s-1 for up to 30 min, the longest exposure time used. Both CO2 and O2 influenced the extent of cytosolic alkalinisation. At 500 mol CO2 · mol-1 gas the cytosolic alkalinisation was suppressed more than at 16 or 20 mol CO2 · mol-1 gas. The suppressing effect of CO2 on the NH3induced alkalinisation was larger in illuminated leaves of the C4 plants Z. mays and A. caudatus than in leaves of the C3 plant P. zonale. A reduction of the O2 concentration from 210 to 10 mmol O2 · mol -1 gas, which inhibits photorespiration, increased the NH3induced cytosolic alkalinisation in C3 plants. Suppression by CO2 or O2 of the alkaline pH shift caused by the dissolution and protonation of NH3 in queous leaf compartments, and possibly by the production of organic compounds synthesised from atmospheric NH3, indicates that NH3 which enters leaves is rapidly assimilated if photosynthesis or photorespiration provide nitrogen acceptor molecules.This work was supported by the Biotechnology and Biological Sciences Research Council and the Deutsche Forschungsgemein-schaft within the framework of the research of Sonderforschun-gsbreich 251 of the University of Würzburg. We are grateful to Dr. B. Wollenweber (The Royal Veterinary and Agricultural University, Denmark) for discussions.  相似文献   
98.
99.
We have measured the Soret band of the photoproduct obtained by complete photolysis of sperm whale carbonmonoxymyoglobin at 10 K. The experimental spectrum has been modeled with an analytical expression that takes into account the homogeneous bandwidth, the coupling of the electronic transition with both high and low frequency vibrational modes, and the effects of static conformational heterogeneity. The comparison with deoxymyoglobin at low temperature reveals three main differences. In the photoproduct, the Soret band is shifted to red. The band is less asymmetric, and an enhanced coupling to the heme vibrational mode at 674 cm−1 is observed. These differences reflect incomplete relaxation of the active site after ligand dissociation. The smaller band asymmetry of the photoproduct can be explained by a smaller displacement of the iron atom from the mean porphyrin plane, in quantitative agreement with the X-ray structure analysis. The enhanced vibrational coupling is attributed to a subtle heme distortion from the planar geometry that is barely detectable in the X-ray structure.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号