全文获取类型
收费全文 | 178篇 |
免费 | 0篇 |
专业分类
178篇 |
出版年
2022年 | 1篇 |
2021年 | 1篇 |
2020年 | 1篇 |
2019年 | 2篇 |
2016年 | 5篇 |
2015年 | 3篇 |
2014年 | 1篇 |
2012年 | 2篇 |
2011年 | 1篇 |
2010年 | 4篇 |
2009年 | 33篇 |
2008年 | 6篇 |
2007年 | 4篇 |
2006年 | 5篇 |
2005年 | 5篇 |
2004年 | 6篇 |
2003年 | 10篇 |
2002年 | 6篇 |
2001年 | 12篇 |
2000年 | 1篇 |
1999年 | 11篇 |
1998年 | 7篇 |
1997年 | 7篇 |
1996年 | 6篇 |
1995年 | 6篇 |
1994年 | 3篇 |
1993年 | 7篇 |
1992年 | 4篇 |
1991年 | 1篇 |
1990年 | 4篇 |
1989年 | 2篇 |
1988年 | 2篇 |
1987年 | 2篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 2篇 |
1976年 | 1篇 |
排序方式: 共有178条查询结果,搜索用时 15 毫秒
71.
72.
Abstract The anaerobic degradation of microcrystalline cellulose by thermostable cellulolytic enzyme complexes from Clostridium thermocellum JW20 (ATCC 31449) was monitored. For quantitative investigations as enzyme-coupled spectrophotometric assay has been developed. The assay allows for the evaluation of the release of cellubiose-/glucose-units from native cellulose. Kinetic studies revealed that the anaerobic breakdown of crystalline cellulose (CC) at 60°C follows Michaelis-Menten kinetics K m CC values have been determined for different aggregation states of the cellulolytic complex. The presented assay seems well suited to screen for CC-degrading enzymes of various sources, and to further explore the mechanism of CC-breakdown. 相似文献
73.
A repetitive DNA fragment carrying a hot spot for de novo DNA methylation enhances expression variegation in tobacco and petunia 总被引:3,自引:0,他引:3
Michael ten Lohuis reas Müller Iris Heidmann Ingrid Niedenhof Peter Meyer 《The Plant journal : for cell and molecular biology》1995,8(6):919-932
A 1.6 kb r ep etitive DNA s equence (RPS) from Petunia hybrida was identified that destabilizes expression of a GUS marker transgene. Following polyethylene glycol (PEG)-mediated tobacco and petunia protoplast transformations, GUS expression patterns analysed on callus and plant levels were clearly more variable when constructs contained the RPS sequence. The effect on transgens expression required chromosomal integration since the two different RPS constructs employed did not exhibit reduced levels of GUS activities in transient assays. DNA methylation analysis implies a hypermethylated default state of endogenous RPS copies present in the petunia genome. Analysis of the transgens DNA in different transgenic tobacco plants showed almost complete hypermethylation of a particular Hhal site of the RPS sequence. It is proposed that, due to the presence of specific signals within the RPS region or based on interaction of RPS with other endogenous homologous sequences, RPS functions as an initiation region for de novo methylation and induces expression variegation in adjacent sequences. 相似文献
74.
Conny Thiel-Egenter Felix Gugerli Nadir Alvarez Sabine Brodbeck Elbieta Cielak Licia Colli Thorsten Englisch Myriam Gaudeul Ludovic Gielly Grayna Korbecka Riccardo Negrini Ovidiu Paun † Marco Pellecchia Delphine Rioux Micha Ronikier Peter Schönswetter Fanny Schüpfer Pierre Taberlet reas Tribsch Marcela van Loo † Manuela Winkler Rolf Holderegger the IntraBioDiv Consortium 《Global Ecology and Biogeography》2009,18(1):78-87
Aim To test the influence of various species traits, elevation and phylogeographical history on the genetic diversity of high-mountain plants in the Alps and Carpathians.
Location The regular sampling grid comprised the whole range of the European Alps and the Carpathians.
Methods Twenty-two high-mountain plant species were exhaustively sampled and their genetic diversity was assessed with amplified fragment length polymorphisms (AFLPs). ANOVAs were used to check for relationships between species traits and species genetic diversity, and to test whether genetic diversity was influenced by altitude and phylogeographical history (i.e. Alps versus Carpathians).
Results In both mountain systems, species dispersed and pollinated by wind showed higher genetic diversity than species with self or insect pollination, and with animal- or gravity-dispersed seeds. Only in the Alps did altitudinal range size affect species genetic diversity significantly: species with narrow altitudinal ranges in the highest vegetation belts had significantly higher genetic diversity than those expanding over wide altitudinal ranges. Genetic diversity was species specific and significantly higher in the Alps than in the Carpathians, but it was not influenced by elevation.
Main conclusions Wind pollination and wind dispersal seem to foster high genetic diversity. However, species traits are often associated and their effects on genetic diversity cannot be clearly disentangled. As genetic diversity is species specific, comparisons across species need to be interpreted with care. Genetic diversity was generally lower in the Carpathians than in the Alps, due to higher topographical isolation of alpine habitats in the Carpathians and this mountain massif's divergent phylogeographical history. Elevation did not influence genetic diversity, challenging the long-held view of decreasing genetic diversity with increasing elevation in mountain plants. 相似文献
Location The regular sampling grid comprised the whole range of the European Alps and the Carpathians.
Methods Twenty-two high-mountain plant species were exhaustively sampled and their genetic diversity was assessed with amplified fragment length polymorphisms (AFLPs). ANOVAs were used to check for relationships between species traits and species genetic diversity, and to test whether genetic diversity was influenced by altitude and phylogeographical history (i.e. Alps versus Carpathians).
Results In both mountain systems, species dispersed and pollinated by wind showed higher genetic diversity than species with self or insect pollination, and with animal- or gravity-dispersed seeds. Only in the Alps did altitudinal range size affect species genetic diversity significantly: species with narrow altitudinal ranges in the highest vegetation belts had significantly higher genetic diversity than those expanding over wide altitudinal ranges. Genetic diversity was species specific and significantly higher in the Alps than in the Carpathians, but it was not influenced by elevation.
Main conclusions Wind pollination and wind dispersal seem to foster high genetic diversity. However, species traits are often associated and their effects on genetic diversity cannot be clearly disentangled. As genetic diversity is species specific, comparisons across species need to be interpreted with care. Genetic diversity was generally lower in the Carpathians than in the Alps, due to higher topographical isolation of alpine habitats in the Carpathians and this mountain massif's divergent phylogeographical history. Elevation did not influence genetic diversity, challenging the long-held view of decreasing genetic diversity with increasing elevation in mountain plants. 相似文献
75.
Hindcasting cyanobacterial communities in Lake Okaro with germination experiments and genetic analyses 总被引:2,自引:0,他引:2
Susanna A. Wood Katrin Jentzsch reas Rueckert David P. Hamilton & S. Craig Cary 《FEMS microbiology ecology》2009,67(2):252-260
Cyanobacterial blooms are becoming increasingly prevalent worldwide. Sparse historic phytoplankton records often result in uncertainty as to whether bloom-forming species have always been present and are proliferating in response to eutrophication or climate change, or if there has been a succession of new arrivals through recent history. This study evaluated the relative efficacies of germination experiments and automated rRNA intergenic spacer analysis (ARISA) assays in identifying cyanobacteria in a sediment core and thus reconstructing the historical composition of cyanobacterial communities. A core (360 mm in depth) was taken in the central, undisturbed basin of Lake Okaro, New Zealand, a lake with a rapid advance of eutrophication and increasing cyanobacteria populations. The core incorporated a tephra from an 1886 volcanic eruption that served to delineate recent sediment deposition. ARISA and germination experiments successfully detected akinete-forming nostocaleans in sediment dating 120 bp and showed little change in Nostocales species structure over this time scale. Species that had not previously been documented in the lake were identified including Aphanizomenon issatschenkoi , a potent anatoxin-a producer. The historic composition of Chrococcales and Oscillatoriales was more difficult to reconstruct, potentially due to the relatively rapid degradation of vegetative cells within sediment. 相似文献
76.
Allelic Variation of Human Serotonin Transporter Gene Expression 总被引:30,自引:0,他引:30
77.
Anett Geyer reas Roth Stephan Vettermann Elisabeth Günther Annemarie Groh Eberhard Straube Karl-Hermann Schmidt 《FEMS immunology and medical microbiology》1999,26(1):11-24
Besides group A (GAS), Lancefield group C beta-haemolytic streptococci (GCS) have been implicated as a causative agent in outbreaks of purulent pharyngitis. In this study we have investigated a class CI M protein of a Streptococcus dysgalactiae1:256, revealed that 26% of these sera showed serological cross-reactivity between a 68-kDa cartilage protein and the N-terminal part of MC. Only 8% of the sera of healthy patients showed this property. In additional, MC also cross-reacted with antibodies recognising epidermal keratins. The cross-reacting 68-kDa protein from cartilage was different from human serum albumin, but was recognised with anti-vimentin immune serum. The MC was cloned and the gene sequenced. By using PCR, recombinant gene fragments encoding characteristic peptide fragments of MC were expressed in Escherichia coli. The peptides were used to map the binding sites for plasma proteins and to locate the cross-reacting epitopes on the MC molecule. In consequence, sequence alignments revealed that MC shared homologous regions with vimentin and different keratins. Our data, obtained with MC, suggest that not only infections with GAS but also infections with GCS and possibly GGS (the latter species can also produce class CI M-like proteins) may be responsible for the formation of streptococcal-associated sequel diseases. 相似文献
78.
Chaenotheca phaeocephala and C. subroscida have been characterized by differences in their morphology and ecology. They are, however, morphologically plastic and sometimes seem to intergrade. It has been suspected that the differences in morphology between these two taxa could possibly be phenotypic and caused by their occurrence in different habitats and/or by the association with different photobionts. To test if there is a genetic difference between the species ITS1–5.8S-ITS2 rDNA sequences of six specimens of the mycobiont of C. phaeocephala and five of C. subroscida were compared. Further the ITS1–5.8S-ITS2 rDNA sequences of the photobiont of one specimens of C. phaeocephala and six of C. subroscida were compared to each other and to other species of Trebouxia. The mycobiont sequences of both C. phaeocephala and C. subroscida were monophyletic, substantially different and the groups had strong supports. They also proved to be associated with different Trebouxia species, C. phaeocephala with T. arboricola and Chaenotheca subroscida with T. jamesii. The morphologically based concepts of C. phaeocephala and C. subroscida thus not merely represent phenotypic variation but also are associated with considerable genetic differences in the extremes of the ITS1–5.8S-ITS2 rDNA region. 相似文献
79.
Hannes Gamper Markus Peter† Jan Jansa‡ reas Lüscher† Ueli A. Hartwig§ Adrian Leuchtmann 《Global Change Biology》2004,10(2):189-199
Rising atmospheric carbon dioxide partial pressure (pCO2) and nitrogen (N) deposition are important components of global environmental change. In the Swiss free air carbon dioxide enrichment (FACE) experiment, the effect of altered atmospheric pCO2 (35 vs. 60 Pa) and the influence of two different N‐fertilization regimes (14 vs. 56 g N m?2 a?1) on root colonization by arbuscular mycorrhizal fungi (AMF) and other fungi (non‐AMF) of Lolium perenne and Trifolium repens were studied. Plants were grown in permanent monoculture plots, and fumigated during the growth period for 7 years. At elevated pCO2 AMF and non‐AMF root colonization was generally increased in both plant species, with significant effects on colonization intensity and on hyphal and non‐AMF colonization. The CO2 effect on arbuscules was marginally significant (P=0.076). Moreover, the number of small AMF spores (≤100 μm) in the soils of monocultures (at low‐N fertilization) of both plant species was significantly increased, whereas that of large spores (>100 μm) was increased only in L. perenne plots. N fertilization resulted in a significant decrease of root colonization in L. perenne, including the AMF parameters, hyphae, arbuscules, vesicles and intensity, but not in T. repens. This phenomenon was probably caused by different C‐sink limitations of grass and legume. Lacking effects of CO2 fumigation on intraradical AMF structures (under high‐N fertilization) and no response to N fertilization of arbuscules, vesicles and colonization intensity suggest that the function of AMF in T. repens was non‐nutritional. In L. perenne, however, AM symbiosis may have amended N nutrition, because all root colonization parameters were significantly increased under low‐N fertilization, whereas under high‐N fertilization only vesicle colonization was increased. Commonly observed P‐nutritional benefits from AMF appeared to be absent under the phosphorus‐rich soil conditions of our field experiment. We hypothesize that in well‐fertilized agricultural ecosystems, grasses benefit from improved N nutrition and legumes benefit from increased protection against pathogens and/or herbivores. This is different from what is expected in nutritionally limited plant communities. 相似文献
80.
Anaerobic degradation of 3-hydroxybenzoate by a newly isolated nitrate-reducing bacterium 总被引:1,自引:0,他引:1
A Gram-negative nitrate-reducing bacterium, strain Asl-3, was isolated from activated sludge with nitrate and 3-hydroxybenzoate as sole source of carbon and energy. The new isolate was facultatively anaerobic, catalase- and oxidase-positive and polarly monotrichously flagellated. In addition to nitrate, nitrite, N2O, and O2 served as electron acceptors. Growth with 3-hydroxybenzoate and nitrate was biphasic: nitrate was completely reduced to nitrite before nitrite reduction to N2 started. Benzoate, 3-hydroxybenzoate, 4-hydroxybenzoate, protocatechuate or phenyl-acetate served as electron and carbon source under aerobic and anaerobic conditions. During growth with excess carbon source, poly-beta-hydroxybutyrate was formed. These characteristics allow the affiliation of strain Asl-3 with the family Pseudomonadaceae. Analogous to the pathway of 4-hydroxybenzoate degradation in other bacteria, the initial step in anaerobic 3-hydroxybenzoate degradation by this organism was activation to 3-hydroxy-benzoyl-CoA in an ATP-consuming reaction. Cell extracts of 3-hydroxybenzoate-grown cells exhibited 3-hydroxybenzoyl-CoA synthetase activity of 190 nmol min-1 mg protein-1 as well as benzoyl-CoA synthetase activity of 86 nmol min-1 mg protein-1. A reductive dehydroxylation of 3-hydroxybenzoyl-CoA could not be demonstrated due to rapid hydrolysis of chemically synthesized 3-hydroxybenzoyl-CoA by cell extracts. 相似文献