首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   3篇
  国内免费   1篇
  145篇
  2022年   1篇
  2018年   1篇
  2017年   5篇
  2016年   4篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2012年   9篇
  2011年   4篇
  2010年   2篇
  2009年   4篇
  2008年   6篇
  2007年   4篇
  2006年   3篇
  2005年   22篇
  2004年   14篇
  2003年   8篇
  2002年   6篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1992年   3篇
  1991年   4篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1974年   2篇
  1971年   1篇
  1970年   1篇
  1958年   1篇
排序方式: 共有145条查询结果,搜索用时 15 毫秒
91.
We explored the relationship between soil processes, estimated through soil respiration (R soil ), and the spatial variation in forest structure, assessed through the distribution of tree size, in order to understand the determinism of spatial variations in R soil in a tropical forest. The influence of tree size was examined using an index (I c ) calculated for each tree as a function of (1) the trunk cross section area and (2) the distance from the measurement point. We investigated the relationships between I c and litterfall, root mass and R soil , respectively. Strong significant relationships were found between I c and both litterfall and root mass. R soil showed a large range of variations over the 1-ha experimental plot, from 1.5 to 12.6 gC m?2 d?1. The best relationship between I c and R soil only explained 17% of the spatial variation in R soil . These results support the assumption that local spatial patterns in litter production and root mass depend on tree distribution in tropical forests. Our study also emphasizes the modest contribution of tree size distribution–which is mainly influenced by the presence of the biggest trees (among the large range size of the inventoried trees greater than 10 cm diameter at 1.30 m above ground level or at 0.5 m above the buttresses)–in explaining spatial variations in R soil .  相似文献   
92.
Amino Acids - Bombesin mediates several biological activities in the gastrointestinal (GI) tract and central nervous system in mammals, including smooth muscle contraction, secretion of GI hormones...  相似文献   
93.
Cell cytoplasm contains high concentrations of high-molecular-weight components that occupy a substantial part of the volume of the medium (crowding conditions). The effect of crowding on biochemical processes proceeding in the cell (conformational transitions of biomacromolecules, assembling of macromolecular structures, protein folding, protein aggregation, etc.) is discussed in this review. The excluded volume concept, which allows the effects of crowding on biochemical reactions to be quantitatively described, is considered. Experimental data demonstrating the biochemical effects of crowding imitated by both low-molecular-weight and high-molecular-weight crowding agents are summarized.Translated from Biokhimiya, Vol. 69, No. 11, 2004, pp. 1522–1536.Original Russian Text Copyright © 2004 by Chebotareva, Kurganov, Livanova.  相似文献   
94.
Tension wood is widespread in the organs of woody plants. During its formation, it generates a large tensile mechanical stress, called maturation stress. Maturation stress performs essential biomechanical functions such as optimizing the mechanical resistance of the stem, performing adaptive movements, and ensuring long-term stability of growing plants. Although various hypotheses have recently been proposed, the mechanism generating maturation stress is not yet fully understood. In order to discriminate between these hypotheses, we investigated structural changes in cellulose microfibrils along sequences of xylem cell differentiation in tension and normal wood of poplar (Populusdeltoides × Populustrichocarpa ‘I45-51’). Synchrotron radiation microdiffraction was used to measure the evolution of the angle and lattice spacing of crystalline cellulose associated with the deposition of successive cell wall layers. Profiles of normal and tension wood were very similar in early development stages corresponding to the formation of the S1 and the outer part of the S2 layer. The microfibril angle in the S2 layer was found to be lower in its inner part than in its outer part, especially in tension wood. In tension wood only, this decrease occurred together with an increase in cellulose lattice spacing, and this happened before the G-layer was visible. The relative increase in lattice spacing was found close to the usual value of maturation strains, strongly suggesting that microfibrils of this layer are put into tension and contribute to the generation of maturation stress.Wood cells are produced in the cambium at the periphery of the stem. The formation of the secondary wall occurs at the end of cell elongation by the deposition of successive layers made of cellulose microfibrils bounded by an amorphous polymeric matrix. Each layer has a specific chemical composition and is characterized by a particular orientation of the microfibrils relative to the cell axis (Mellerowicz and Sundberg, 2008). Microfibrils are made of crystalline cellulose and are by far the stiffest constituent of the cell wall. The microfibril angle (MFA) in each layer is determinant for cell wall architecture and wood mechanical properties.During the formation of wood cells, a mechanical stress of a large magnitude, known as “maturation stress” or “growth stress” (Archer, 1986; Fournier et al., 1991), occurs in the cell walls. This stress fulfills essential biomechanical functions for the tree. It compensates for the comparatively low compressive strength of wood and thus improves the stem resistance against bending loads. It also provides the tree with a motor system (Moulia et al., 2006), necessary to maintain the stem at a constant angle during growth (Alméras and Fournier, 2009) or to achieve adaptive reorientations. In angiosperms, a large tensile maturation stress is generated by a specialized tissue called “tension wood.” In poplar (Populusdeltoides × Populustrichocarpa), as in most temperate tree species, tension wood fibers are characterized by the presence of a specific layer, called the G-layer (Jourez et al., 2001; Fang et al., 2008), where the matrix is almost devoid of lignin (Pilate et al., 2004) and the microfibrils are oriented parallel to the fiber axis (Fujita et al., 1974). This type of reaction cell is common in plant organs whose function involves the bending or contraction of axes, such as tendrils, twining vines (Bowling and Vaughn, 2009), or roots (Fisher, 2008).The mechanism at the origin of tensile maturation stress has been the subject of a lot of controversy and is still not fully understood. However, several recent publications have greatly improved our knowledge about the ultrastructure, chemical composition, molecular activity, mechanical state, and behavior of tension wood. Different models have been proposed and discussed to explain the origin of maturation stress (Boyd, 1972; Bamber, 1987, 2001; Okuyama et al., 1994, 1995; Yamamoto, 1998, 2004; Alméras et al., 2005, 2006; Bowling and Vaughn, 2008; Goswami et al., 2008; Mellerowicz et al., 2008). The specific organization of the G-layer suggests a tensile force induced in the microfibrils during the maturation process. Different hypotheses have been proposed to explain this mechanism, such as the contraction of amorphous zones within the cellulose microfibrils (Yamamoto, 2004), the action of xyloglucans during the formation of microfibril aggregates (Nishikubo et al., 2007; Mellerowicz et al., 2008), and the effect of changes in moisture content stimulated by pectin-like substances (Bowling and Vaughn, 2008). A recent work (Goswami et al., 2008) argued an alternative model, initially proposed by Münch (1938), which proposed that the maturation stress originates in the swelling of the G-layer during cell maturation and is transmitted to the adjacent secondary layers, where the larger MFAs allow an efficient conversion of lateral stress into axial tensile stress. Although the proposed mechanism is not consistent with the known hygroscopic behavior of tension wood, which shrinks when it dries and not when it takes up water (Clair and Thibaut, 2001; Fang et al., 2007; Clair et al., 2008), this hypothesis focused attention on the possible role of cell wall layers other than the G-layer. As a matter of fact, many types of wood fibers lacking a G-layer are known to produce axial tensile stress, such as normal wood of angiosperms and conifers (Archer, 1986) and the tension wood of many tropical species (Onaka, 1949; Clair et al., 2006b; Ruelle et al., 2007), so that mechanisms strictly based on an action of the G-layer cannot provide a general explanation for the origin of tensile maturation stress in wood.In order to further understanding, direct observations of the mechanical state of the different cell wall layers and their evolution during the formation of the tension wood fibers are needed. X-ray diffraction can be used to investigate the orientation of microfibrils (Cave, 1966, 1997a, 1997b; Peura et al., 2007, 2008a, 2008b) and the lattice spacing of crystalline cellulose. The axial lattice spacing d004 is the distance between successive monomers along a cellulose microfibril and reflects its state of mechanical stress (Clair et al., 2006a; Peura et al., 2007). If cellulose microfibrils indeed support a tensile stress, they should be found in an extended state of deformation. Under this assumption, the progressive development of maturation stress during the cell wall formation should be accompanied by an increase in cellulose lattice spacing. Synchrotron radiation allows a reduction in the size of the x-ray beam to some micrometers while retaining a strong signal, whereby diffraction analysis can be performed at a very local scale (Riekel, 2000). This technique has been used to study sequences of wood cell development (Hori et al., 2000; Müller et al., 2002). In this study, we report an experiment where a microbeam was used to analyze the structural changes of cellulose in the cell wall layers of tension wood and normal wood fibers along the sequence of xylem cell differentiation extending from the cambium to mature wood (Fig. 1). The experiment was designed to make this measurement in planta, in order to minimize sources of mechanical disturbance and be as close as possible to the native mechanical state (Clair et al., 2006a). The 200 and 004 diffraction patterns of cellulose were analyzed to investigate the process of maturation stress generation in tension wood.Open in a separate windowFigure 1.Schematic of the experimental setup, showing the x-ray beam passing perpendicular to the longitudinal-radial plane of wood and the contribution of the 004 and 200 crystal planes to the diffraction pattern recorded by the camera. [See online article for color version of this figure.]  相似文献   
95.
Under normal conditions, plasmacytoid dendritic cells (pDCs) are located in peripheral lymphoid organs or circulate in the blood, from where they can migrate to sites of infection or inflammation. In inflamed tissues, pDCs can be exposed to elevated levels of reactive oxygen species produced by inflammatory cells and we presume that oxidative stress could affect the cellular responses of pDCs to microenvironmental stimuli. To explore this possibility, human pDCs isolated from peripheral blood of healthy donors were treated with H2O2 and R837 (a Toll-like receptor 7 ligand), separately and in combination. Our results demonstrate that treatment with a low concentration (0.01 μM) of H2O2 resulted in only slight changes in the expression of CD40, CD80, CD86, and CD83; however, low-dose H2O2 markedly decreased the expression of HLA-DQ on pDCs. Exposure to H2O2 did not trigger the release of IL-6, TNF-α, IL-8, or IFN-α from pDCs. Although addition of H2O2 did not modify the capacity of pDCs to activate allogeneic IL-17- or IFN-γ-producing T cells, it significantly increased the ability of pDCs to stimulate IL-4-secreting T cells. Exposure of pDCs to H2O2 before cocultivation with naïve autologous T cells significantly lowered IL-10 production by T cells, but did not affect IL-17 release. It was also observed that H2O2-exposed pDCs provided stronger stimuli for Th2 than for Th1 differentiation upon autologous activation, compared to untreated pDCs, possibly because of elevated surface expression of OX40-L. Most importantly, when pDCs were stimulated with R837 in the presence of H2O2, decreased phenotypic activation, decreased chemokine and cytokine release, and impaired allo- and autostimulatory functions of pDCs were detected, indicating that pDCs exposed to oxidative stress in vivo may have an anti-inflammatory or tolerogenic role in regulating adaptive immune responses.  相似文献   
96.
97.
A synthesis of olanzapine, 2-methyl-10-(4-methyl-1-piperazinyl)-4H-thieno[2,3-b][1,5]benzodiazepine, was carried out and the conditions for its tritium labeling were optimized to obtain a tritium-labeled olanzapine preparation with a specific radioactivity of 12 Ci/mmol.__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 4, 2005, pp. 420–424.Original Russian Text Copyright © 2005 by Shevchenko, Nagaev, Kuznetsov, Polunin, Zozulya, Myasoedov.  相似文献   
98.
This review summarizes results of some systemic studies of muscle proteins of humans and some other vertebrates. The studies, started after introduction of two-dimensional gel electrophoresis of OFarrell, were significantly extended during development of proteomics, a special branch of functional genomics. Special attention is paid to analysis of characteristic features of strategy for practical realization of the systemic approach during three main stages of these studies: pre-genomic, genomic (with organizational registration of proteomics), and post-genomic characterized by active use of structural genomics data. Proteomic technologies play an important role in detection of changes in isoforms of various muscle proteins (myosins, troponins, etc.). These changes possibly reflecting tissue specificity of gene expression may underline functional state of muscle tissues under normal and pathological conditions, and such proteomic analysis is now used in various fields of medicine.Translated from Biokhimiya, Vol. 69, No. 11, 2004, pp. 1574–1591.Original Russian Text Copyright © 2004 by Shishkin, Kovalyov, Kovalyova  相似文献   
99.
Avian brains and a new understanding of vertebrate brain evolution   总被引:10,自引:0,他引:10  
We believe that names have a powerful influence on the experiments we do and the way in which we think. For this reason, and in the light of new evidence about the function and evolution of the vertebrate brain, an international consortium of neuroscientists has reconsidered the traditional, 100-year-old terminology that is used to describe the avian cerebrum. Our current understanding of the avian brain - in particular the neocortex-like cognitive functions of the avian pallium - requires a new terminology that better reflects these functions and the homologies between avian and mammalian brains.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号