首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7017篇
  免费   436篇
  国内免费   1篇
  7454篇
  2023年   24篇
  2022年   48篇
  2021年   95篇
  2020年   56篇
  2019年   75篇
  2018年   99篇
  2017年   99篇
  2016年   180篇
  2015年   254篇
  2014年   278篇
  2013年   336篇
  2012年   462篇
  2011年   454篇
  2010年   251篇
  2009年   223篇
  2008年   313篇
  2007年   319篇
  2006年   321篇
  2005年   724篇
  2004年   940篇
  2003年   642篇
  2002年   239篇
  2001年   74篇
  2000年   74篇
  1999年   79篇
  1998年   59篇
  1997年   57篇
  1996年   38篇
  1995年   47篇
  1994年   48篇
  1993年   37篇
  1992年   45篇
  1991年   31篇
  1990年   41篇
  1989年   31篇
  1988年   35篇
  1987年   32篇
  1986年   22篇
  1985年   26篇
  1984年   24篇
  1983年   21篇
  1982年   15篇
  1981年   25篇
  1980年   19篇
  1979年   17篇
  1978年   16篇
  1975年   9篇
  1974年   9篇
  1973年   8篇
  1971年   15篇
排序方式: 共有7454条查询结果,搜索用时 11 毫秒
81.
Alternative pre-mRNA splicing is a major mechanism contributing to the proteome complexity of most eukaryotes, especially mammals. In less complex organisms, such as yeasts, the numbers of genes that contain introns are low and cases of alternative splicing (AS) with functional implications are rare. We report the first case of AS with functional consequences in the yeast Yarrowia lipolytica. The splicing pattern was found to govern the cellular localization of malate dehydrogenase, an enzyme of the central carbon metabolism. This ubiquitous enzyme is involved in the tricarboxylic acid cycle in mitochondria and in the glyoxylate cycle, which takes place in peroxisomes and the cytosol. In Saccharomyces cerevisiae, three genes encode three compartment-specific enzymes. In contrast, only two genes exist in Y. lipolytica. One gene (YlMDH1, YALI0D16753g) encodes a predicted mitochondrial protein, whereas the second gene (YlMDH2, YALI0E14190g) generates the cytosolic and peroxisomal forms through the alternative use of two 3'-splice sites in the second intron. Both splicing variants were detected in cDNA libraries obtained from cells grown under different conditions. Mutants expressing the individual YlMdh2p isoforms tagged with fluorescent proteins confirmed that they localized to either the cytosolic or the peroxisomal compartment.  相似文献   
82.
Innate immune system is the first line of host defense against invading microorganisms. It relies on a limited number of germline-encoded pattern recognition receptors that recognize conserved molecular structures of microbes, referred to as pathogen-/microbe-associated molecular patterns (PAMPs/MAMPs). Bacterial cell wall macroamphiphiles, namely Gram-negative bacteria lipopolysaccharide (LPS), Gram-positive bacteria lipoteichoic acid (LTA), lipoproteins and mycobacterial lipoglycans, are important molecules for the physiology of bacteria and evidently meet PAMP/MAMP criteria. They are well suited to innate immune recognition and constitute non-self signatures detected by the innate immune system to signal the presence of an infective agent. They are notably recognized via their lipid anchor by Toll-like receptors (TLRs) 4 or 2. Here, we review our current knowledge of the molecular bases of macroamphiphile recognition by TLRs, with a special emphasis on mycobacterial lipoglycan detection by TLR2.  相似文献   
83.
Reproduction requires resources that cannot be allocated to other functions resulting in direct reproductive costs (i.e. trade-offs between current reproduction and subsequent survival/reproduction). In wild vertebrates, direct reproductive costs have been widely described in females, but their occurrence in males remains to be explored. To fill this gap, we gathered 53 studies on 48 species testing direct reproductive costs in male vertebrates. We found a trade-off between current reproduction and subsequent performances in 29% of the species and in every clade. As 73% of the studied species are birds, we focused on that clade to investigate whether such trade-offs are associated with (i) levels of paternal care, (ii) polygyny or (iii) pace of life. More precisely for this third question, it is expected that fast species (i.e. short lifespan, early maturity, high fecundity) pay a cost in terms of survival, whereas slow species (with opposite characteristics) do so in terms of fecundity. Our findings tend to support this hypothesis. Finally, we pointed out the potential confounding effects that should be accounted for when investigating reproductive costs in males and strongly encourage the investigation of such costs in more clades to understand to what extent our results are relevant for other vertebrates.  相似文献   
84.
85.
86.
Sleep spindles and K-complexes (KCs) define stage 2 NREM sleep (N2) in humans. We recently showed that KCs are isolated downstates characterized by widespread cortical silence. We demonstrate here that KCs can be quasi-synchronous across scalp EEG and across much of the cortex using electrocorticography (ECOG) and localized transcortical recordings (bipolar SEEG). We examine the mechanism of synchronous KC production by creating the first conductance based thalamocortical network model of N2 sleep to generate both spontaneous spindles and KCs. Spontaneous KCs are only observed when the model includes diffuse projections from restricted prefrontal areas to the thalamic reticular nucleus (RE), consistent with recent anatomical findings in rhesus monkeys. Modeled KCs begin with a spontaneous focal depolarization of the prefrontal neurons, followed by depolarization of the RE. Surprisingly, the RE depolarization leads to decreased firing due to disrupted spindling, which in turn is due to depolarization-induced inactivation of the low-threshold Ca2+ current (IT). Further, although the RE inhibits thalamocortical (TC) neurons, decreased RE firing causes decreased TC cell firing, again because of disrupted spindling. The resulting abrupt removal of excitatory input to cortical pyramidal neurons then leads to the downstate. Empirically, KCs may also be evoked by sensory stimuli while maintaining sleep. We reproduce this phenomenon in the model by depolarization of either the RE or the widely-projecting prefrontal neurons. Again, disruption of thalamic spindling plays a key role. Higher levels of RE stimulation also cause downstates, but by directly inhibiting the TC neurons. SEEG recordings from the thalamus and cortex in a single patient demonstrated the model prediction that thalamic spindling significantly decreases before KC onset. In conclusion, we show empirically that KCs can be widespread quasi-synchronous cortical downstates, and demonstrate with the first model of stage 2 NREM sleep a possible mechanism whereby this widespread synchrony may arise.  相似文献   
87.
A kinetic model combining enzyme activity measurements and subcellular compartmentation was parameterized to fit the sucrose, hexose, and glucose-6-P contents of pericarp throughout tomato (Solanum lycopersicum) fruit development. The model was further validated using independent data obtained from domesticated and wild tomato species and on transgenic lines. A hierarchical clustering analysis of the calculated fluxes and enzyme capacities together revealed stage-dependent features. Cell division was characterized by a high sucrolytic activity of the vacuole, whereas sucrose cleavage during expansion was sustained by both sucrose synthase and neutral invertase, associated with minimal futile cycling. Most importantly, a tight correlation between flux rate and enzyme capacity was found for fructokinase and PPi-dependent phosphofructokinase during cell division and for sucrose synthase, UDP-glucopyrophosphorylase, and phosphoglucomutase during expansion, thus suggesting an adaptation of enzyme abundance to metabolic needs. In contrast, for most enzymes, flux rates varied irrespectively of enzyme capacities, and most enzymes functioned at <5% of their maximal catalytic capacity. One of the major findings with the model was the high accumulation of soluble sugars within the vacuole together with organic acids, thus enabling the osmotic-driven vacuole expansion that was found during cell division.  相似文献   
88.
This study was designed to investigate whether the short-term extracorporeal shockwave lithotripsy (ESWL) exposure to kidney produces an oxidative stress and a change in some trace element levels in liver and diaphragm muscles of rats. Twelve male Wistar albino rats were divided randomly into two groups, each consisting of six rats. The animals in the first group did not receive any treatment and served as control group. The right-side kidneys of animals in group 2 were treated with two-thousand 18 kV shock waves while anesthetized with 50 mg kg(-1) ketamine. The localization of the right kidney was achieved after contrast medium injection through a tail vein under fluoroscopy control. The animals were killed 72 h after the ESWL treatment, and liver and diaphragm muscles were harvested for the determination of tissue oxidative stress and trace element levels. Although the malondialdehyde level increased, superoxide dismutase and glutathione peroxidase enzyme activities decreased in the livers and diaphragm muscles of ESWL-treated rats. Although glutathione level increased in liver, it decreased in diaphragm muscles of ESWL-treated animals. Fe, Mg and Mn levels decreased, and Cu and Pb levels increased in the livers of ESWL-treated animals. Fe and Cu levels increased, and Mg, Pb, Mn and Zn levels decreased in the diaphragm muscles of ESWL-treated animals. It also causes a decrease or increase in many mineral levels in liver and diaphragm muscles, which is an undesirable condition for the normal physiological function of tissues.  相似文献   
89.
We have recently described a new method for attaching padlock oligonucleotides to supercoiled plasmid DNA at specific sequences. A variant of this method has been developed in order to allow the coupling of targeting moieties to plasmids using a convenient strategy. After sequence-specific winding around the double-stranded target DNA sequence by ligand-induced triple helix formation, the extremities of a triplex-forming oligonucleotide hybridize to each other, leaving a dangling single-stranded sequence, which is then ligated to a hairpin oligonucleotide using T4 DNA ligase. Any targeting moiety may be attached to the hairpin oligonucleotide. This strategy was used to attach an NLS peptide to a luciferase-expressing plasmid. Despite the presence of the padlock oligonucleotide, the reporter gene was efficiently expressed after transfection of the plasmid in HeLa or T24 cells, using either cationic lipids or cationic polymers as transfecting agents. However, no increase in gene expression could be observed as a result of peptide attachment. Nevertheless, the coupling strategy described in this paper may find applications as a tool for plasmid functionalization in other targeting experiments, and may lead to the development of improved vectors for gene therapy.  相似文献   
90.
Most studies on the structure of DNA in telomeres have been dedicated to the double-stranded region or the guanosine-rich strand and consequently little is known about the factors that may bind to the telomere cytosine-rich (C-rich) strand. This led us to investigate whether proteins exist that can recognise C-rich sequences. We have isolated several nuclear factors from human cell extracts that specifically bind the C-rich strand of vertebrate telomeres [namely a d(CCCTAA)n repeat] with high affinity and bind double-stranded telomeric DNA with a 100× reduced affinity. A biochemical assay allowed us to characterise four proteins of apparent molecular weights 66–64, 45 and 35 kDa, respectively. To identify these polypeptides we screened a λgt11-based cDNA expression library, obtained from human HeLa cells using a radiolabelled telomeric oligonucleotide as a probe. Two clones were purified and sequenced: the first corresponded to the hnRNP K protein and the second to the ASF/SF2 splicing factor. Confirmation of the screening results was obtained with recombinant proteins, both of which bind to the human telomeric C-rich strand in vitro.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号