首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   1篇
  37篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2004年   2篇
  2002年   1篇
  1998年   3篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1990年   1篇
  1984年   2篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
  1971年   1篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
21.
The results cover a statistical analysis of the correlations between aquatic macrophyte communities and chemical parameters (N–NH4, N–NO3, P–PO4, COD, Temperature, dissolved O2, Cl) in unpolluted hard waters (upper Rhine rift valley).This study was based on a table of phytosociological relevés for six plant communities, named A, B, C, CD, D and E. The ecological determinism of the communities were defined from: The study of the seven foregoing physico-chemical parameters for 29 groundwater streams on periodical samples of water. The study of the change with time in the aquatic vegetation after change of the trophic status, confirmed by analysis. The comparative study of the vegetation of the streams and parts of the streams with different trophic statuses but fed by the same groundwater table of the Wurmian Rhine gravels.Analysis of the main components showed the good correlation between the macrophyte communities and the trophy (N–NH4, P–PO4). These six communities were classified according to the trophic scale. Discriminant analysis was used to compare the classification of the phytosociological sequence with that based on the statistical analysis. The authors give a very precise bioindication scale (based on the macrophyte community) for the eutrophication degree in unpolluted hard waters.  相似文献   
22.
The change in phosphorus and nitrogen content in a common geophyte spring species, Allium ursinum, is studied in alluvial forests in relation to three flooding histories related to river regulation: (1) annually flooded, (2) unflooded for 30 years, and (3) unflooded for 200 years. Flood suppression leads to a reduction of available P soil content as well as decreasing the biomass and the amount of phosphorus in plants, but has no significant effect on N plant content. Plant N:P ratio increases with the suppression of floods and is primarily driven by soil N:P ratios, in turn markedly linked to the total nitrogen in the soil. We highlighted a lower nutrient accumulation in leaves during plant growth in unflooded forests. Overall, our results suggest that P was the main limiting factor in unflooded forests while nitrogen was the main limiting factor in annually flooded forests. Flood suppression strongly affects the morphology and nutrient uptake by Allium ursinum and thus nutrient cycling in riverine forests.  相似文献   
23.
Antibiotics have been a true miracle. Would it end in a nightmare? Possibly. Since 1941, the antibiotic treatment of bacterial infections has been a revolution. The golden age lasted half a century, a period during which infectious diseases were considered definitely defeated. And although from the beginning some kind of bacterial resistance was observed, a strong long-lasting belief was that continuous innovation and invention of new molecules would keep providing a step ahead in the war waged between the human and microbes. For twenty years the resistances became each year a greater concern. Having first hit the hospital, they now affect the community. New effective antibiotics are scarce, and innovation once thought endless, stopped. Today, to escape the nightmare of a return to the pre-antibiotic era, we must find a way to curb the spread of resistant bacteria, change radically our irresponsible squander of antibiotics, and give ways to new treatments effective against future resistant pathogens. These topics are developed in the present paper dealing with the real risk that these 20th century wonder of the medical science, become an object of memory.  相似文献   
24.
The reactions between some Ni(II) oligopeptides (Gly-His-Lys, (Gly)4, Asp-Ala-His-Lys, Gly-Gly-His, beta Ala-His, and serum albumin) and reduced oxygen species have been characterized by spin-trapping experiments using DMPO and Me2SO. Most of the peptides possessed superoxide dismutase- and catalase-like activities leading to the formation of either oxene [NiO]2+ or, in the case of beta Ala-His, hydroxyl radicals. Both these species may affect DNA integrity through distinct mechanisms.  相似文献   
25.
The polyphenoloxidase (PPO) from black poplar senescent leaves has been purified to almost complete homogeneity by a combination of ammonium sulphate precipitation, Sephadex G75 filtration and DEAE-cellulose chromatography. The purified enzyme has a MW of 60 000 and is probably a Cu+ enzyme. Peroxidase (PO) activity co-purifies with PPO and has the same MW as it. The two enzymes differ in pH optimum and in response to the effect of ionic strength. Natural phenols are either substrates, inhibitors or activators of black poplar PPO. This enzyme is an o-diphenoloxidase which binds substrates with Km in the millimolar range. With caffeic and chlorogenic acids inhibition by excess substrate is observed. Benzoic acid phenols and cinnamic acid phenols are either competitive or non-competitive inhibitors of PPO. Hydroquinone is a highly potent non-competitive inhibitor of the enzyme (Ki  90 μM). Ferulic acid is a potent activator of the PPO-catalysed oxidation of catechol (Ka  0.34 mM, νsato  7.7).  相似文献   
26.
The present-day Rhine alluvial hardwood forest (Querco-Ulmetum minoris, Issler 24) in the upper Rhine valley (France/Germany) is comprised of three vegetation units, one still flooded by calm waters (F) and the two others unflooded, one for 30 years (UF30) (after the river canalisation) and the other for about 130 years (UF130) (after river straightening and embankment work in the middle nineteenth century). In the three stands, species composition, structure and diversity of vegetation and nutrient content of mature leaf, leaf litter and soil have been studied. Fungi (Macromycetae) were only studied in two stands (F and UF130). The intensity of nutrient recycling was exemplified by comparing the chemical composition of rainwater, flood, throughfall, mature leaf, leaf litter, soil and groundwater in two of these stands (F and UF30).The elimination of floods has caused a change in floristic composition, tree density and plant diversity. Tree density was higher in the two unflooded stands and was related to a large increase in sapling (< 6 cm dbh) density more than to a change of stem (> 6 cm dbh) density. Sapling density increased 2 times and three times in the UF30 and the UF130 respectively, whereas the stem density increased only 12% in the first stand and decreased 29% in the second one. The saprophytic macromycete communities have been supplemented with mycorrhizal species. Leaf litter production was slightly greater in the flooded (4.44 T ha-1 yr-1) than in the two unflooded stands ( 3.72 T ha-1 yr-1). Foliar N level is twice as high in the flooded stands in spite of an opposite soil status. P level decreased in soil and leaves with the duration of isolation and was at the same level in the groundwater in two stands (F and UF30). K, Mg and Ca contents of green leaf and leaf litter were high due to the geochemistry of the Rhine substrate (calcareous gravels and pebbles) and similar in all the stands studied, even though there are large inputs of these three elements by floods. Moreover we showed that the groundwater chemistry reflected the variations of nutrient inputs and thus could be a good indicator of the functioning of an alluvial ecosystem and of its change as a result of human activities. The restoration of floods in hardwood forest contributes to the preservation of alluvial vegetational structure and composition, the stimulation of biological processes and a better plant mineral nutrition and water supply.  相似文献   
27.
28.
Community ecologists implicitly assume redundancy when they aggregate species into functional groups. But there have been remarkably few empirical efforts to investigate the accuracy of this concept in situ. The concept of redundancy could be roughly split into two components: the ecological redundancy (similar response to environmental variations involving similar ecological processes) and the functional redundancy (similar biological trait combinations shaping similar functional processes). Both types of redundancy are tested among the 3 invasive European Elodeas. In 11 sites and during two successive years 2004–2005, the cover growth rate of each Elodea species was monthly recorded. To test ecological redundancy, cover growth rates were related to a large suite of environmental variables. To test functional redundancy, 13 biological traits involved in competitive relationships were measured each month. Firstly, the redundancy hypothesis looks problematic for Elodea ernstiae. Indeed, the later possess numerous biological traits involved in light competition and niche overlap with the other Elodeas is very low. Secondly, ecological and functional redundancy can be successfully applied to Elodea canadensis and Elodea nuttallii. They share a large suite of biological traits leading to wide niche overlaps through the growing season. And the measured environmental variables do not differentially influence their growth rates, which are, in turn, controlled by a similar group of biological traits. In this way, the different invasiveness patterns of E. canadensis and E. nuttallii could be solely due to the ecological drift and their ecological dynamic could follow neutral rules.  相似文献   
29.
The paper presents a new index for assessing water trophy and organic pollution. It is based on only true aquatic macrophytes – being calculated on species score, coefficient of ecological amplitude and degree of cover. The method was tested in an acidic lowland river and an alkaline mountain river, and is shown to be validated by bio-indication scales based on macrophyte communities. The practical interest is discussed regarding the Water Framework Directive. Electronic Supplementary Material Electronic supplementary material is available for this article atand accessible for authorised users.  相似文献   
30.
Denitrification in floodplains is a major issue for river- and groundwater quality. In the Upper Rhine valley, floodplain forests are about to be restored to serve as flood retention areas (polders). Besides flood attenuation in downstream areas, improvement of water quality became recently a major goal for polder construction. Redox potential monitoring was suggested as a means to support assessment of nitrogen elimination in future floodplains by denitrification during controlled flooding. To elucidate the relationship between redox potential and denitrification, experiments with floodplain soils and in situ measurements were done. Floodplain soil of two depth profiles from a hardwood forest of the Upper Rhine valley was incubated anaerobically with continuous nitrate supply. Reduction of nitrate was followed and compared with redox potential and organic matter content. The redox potential under denitrifying conditions ranged from 10 to 300 mV. Redox potential values decreased with increasing nitrate reduction rates and increasing organic matter content. Furthermore, a narrow correlation between organic matter and nitrate reduction was observed. Experiments were intended to help interpreting redox potentials generated under in situ conditions as exemplified by in situ observations for the year 1999. Results obtained by experiments and in situ observations showed that monitoring of redox potential could support management of the flooding regime to optimize nitrogen retention by denitrification in future flood retention areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号