全文获取类型
收费全文 | 1940篇 |
免费 | 147篇 |
专业分类
2087篇 |
出版年
2023年 | 5篇 |
2022年 | 21篇 |
2021年 | 30篇 |
2020年 | 24篇 |
2019年 | 23篇 |
2018年 | 22篇 |
2017年 | 28篇 |
2016年 | 46篇 |
2015年 | 103篇 |
2014年 | 100篇 |
2013年 | 136篇 |
2012年 | 170篇 |
2011年 | 161篇 |
2010年 | 115篇 |
2009年 | 99篇 |
2008年 | 138篇 |
2007年 | 138篇 |
2006年 | 109篇 |
2005年 | 115篇 |
2004年 | 105篇 |
2003年 | 114篇 |
2002年 | 51篇 |
2001年 | 20篇 |
2000年 | 14篇 |
1999年 | 20篇 |
1998年 | 23篇 |
1997年 | 12篇 |
1996年 | 17篇 |
1995年 | 11篇 |
1994年 | 8篇 |
1993年 | 8篇 |
1992年 | 12篇 |
1991年 | 10篇 |
1990年 | 2篇 |
1989年 | 5篇 |
1988年 | 3篇 |
1987年 | 4篇 |
1986年 | 10篇 |
1985年 | 5篇 |
1984年 | 2篇 |
1983年 | 4篇 |
1982年 | 8篇 |
1981年 | 5篇 |
1980年 | 2篇 |
1978年 | 4篇 |
1977年 | 4篇 |
1976年 | 4篇 |
1975年 | 4篇 |
1972年 | 5篇 |
1957年 | 2篇 |
排序方式: 共有2087条查询结果,搜索用时 15 毫秒
41.
42.
Drought has dramatic negative effects on plants' growth and crop productivity. Although some of the responses and underlying mechanisms are still poorly understood, there is increasing evidence that drought may have a negative effect on photosynthetic capacity. Biochemical models of leaf photosynthesis coupled with models of radiation transfer have been widely used in ecophysiological studies, and, more recently, in global change modeling. They are based on two fundamental relationships at the scale of the leaf: (i) nitrogen content-light exposure and (ii) photosynthetic capacity-nitrogen content. Although drought is expected to increase in many places across the world, such models are not adapted to drought conditions. More specifically, the effects of drought on the two fundamental relationships are not well documented. The objective of our study was to investigate the effects of a long-term drought imposed slowly on the nitrogen content and photosynthetic capacity of leaves similarly exposed to light, from 3-year-old lychee trees cv. Kwa? Mi. Leaf nitrogen and non-structural carbohydrate concentrations were measured along with gas exchanges and the light-saturated rate of photosynthetic electron transport (J(max)) after a 5.5-month-long period of drought. Leaf nitrogen content on a mass basis remained stable, while the leaf mass-to-area ratio (LMA) increased with increasing water stress. Consequently, the leaf nitrogen content on an area basis (N(a)) increased in a non-linear fashion. The starch content decreased, while the soluble sugar content increased. Stomata closed and net assimilation decreased to zero, while J(max) and the ratio J(max)/N(a) decreased with increasing water stress. The drought-associated decrease in photosynthetic capacity can be attributed to downregulation of photosynthetic electron transport and to reallocation of leaf nitrogen content. It is concluded that modeling photosynthesis in drought conditions will require, first, the modeling of the effect of drought on LMA and J(max). 相似文献
43.
Exogenous and endogenous cannabinoids play an important role in modulating the release of neurotransmitters in hippocampal excitatory and inhibitory networks, thus having profound effect on higher cognitive and emotional functions such as learning and memory. In this study we have studied the effect of cannabinoid agonists on the potassium depolarization-evoked [(3)H]GABA release from hippocampal synaptosomes in the wild-type (WT) and cannabinoid 1 receptor (CB(1)R)-null mutant mice. All tested cannabinoid agonists (WIN55,212-2, CP55,940, HU-210, 2-arachidonoyl-glycerol, 2-AG; delta-9-tetra-hydrocannabinol, THC) inhibited [(3)H]GABA release in WT mice with the following rank order of agonist potency: HU-210>CP55,490>WIN55,212-2>2-AG>THC. By contrast, 2-AG and THC displayed the greatest efficacy eliciting almost complete inhibition of evoked [(3)H]GABA efflux, whereas the maximal inhibition obtained by HU-210, CP55,490, and WIN55,212-2 were less, eliciting not more than 40% inhibition. The inhibitory effect of WIN55,212-2, THC and 2-AG on evoked [(3)H]GABA efflux was antagonized by the CB(1) receptor inverse agonist AM251 (0.5 μM) in the WT mice. In the CB(1)R knockout mice the inhibitory effects of all three agonists were attenuated. In these mice, AM251 did not antagonize, but further reduced the [(3)H]GABA release in the presence of the synthetic agonist WIN55,212-2. By contrast, the concentration-dependent inhibitory effects of THC and 2-AG were partially antagonized by AM251 in the absence of CB(1) receptors. Finally, the inhibition of evoked [(3)H]GABA efflux by THC and 2-AG was also partially attenuated by AM630 (1 μM), the CB(2) receptor-selective antagonist, both in WT and CB(1) knockout mice. Our data prove the involvement of CB(1) receptors in the effect of exo- and endocannabinoids on GABA efflux from hippocampal nerve terminals. In addition, in the effect of the exocannabinoid THC and the endocannabinoid 2-AG, non-CB(1), probably CB(2)-like receptors are also involved. 相似文献
44.
Bosselut N Van Ghelder C Claverie M Voisin R Onesto JP Rosso MN Esmenjaud D 《Plant cell reports》2011,30(7):1313-1326
Resistant rootstocks offer an alternative to pesticides for the control of soil pests. In Prunus spp., resistance loci to root-knot nematodes (RKN) have been mapped and a transformation method is needed to validate candidate genes. Our efforts have focused on the generation of transformed hairy-roots and composite plants appropriate for nematode infection assays. An efficient and reliable method using the A4R strain of Agrobacterium rhizogenes for the transformation of Prunus roots with an Egfp reporter gene is given. The rooting efficiency, depending on the genotypes, was maximal for the interspecific hybrid 253 (Myrobalan plum?×?almond-peach), susceptible to RKN, that was retained for subsequent studies. From the agro-inoculated cuttings, 72% produced roots, mainly at the basal section of the stem. Transformed roots were screened by microscope detection of Egfp fluorescence and molecular analyses of the integration of the transgene. The absence of residual agrobacteria in the plants was checked by the non-amplification of the chromosomal gene chvH. Egfp was expressed visually in 76% of the rooted plants. Isolated hairy roots in Petri dishes and composite plants (transformed roots and non-transformed aerial part) in soil containers were inoculated with the RKN Meloidogyne incognita. In both cases, root transformation did not affect the ability of the nematodes to develop in the root tissues. Our results showed that isolated hairy-roots can be used to validate candidate genes and the conditions in which composite plants offer a complementary system for studying the function of root genes in physiological conditions of whole plants are discussed. 相似文献
45.
Xolani Henry Makhoba Adélle Burger Dina Coertzen Tawanda Zininga Lyn-Marie Birkholtz Addmore Shonhai 《PloS one》2016,11(3)
S-adenosylmethionine decarboxylase (PfAdoMetDC) from Plasmodium falciparum is a prospective antimalarial drug target. The production of recombinant PfAdoMetDC for biochemical validation as a drug target is important. The production of PfAdoMetDC in Escherichia coli has been reported to result in unsatisfactory yields and poor quality product. The co-expression of recombinant proteins with molecular chaperones has been proposed as one way to improve the production of the former in E. coli. E. coli heat shock proteins DnaK, GroEL-GroES and DnaJ have previously been used to enhance production of some recombinant proteins. However, the outcomes were inconsistent. An Hsp70 chimeric protein, KPf, which is made up of the ATPase domain of E. coli DnaK and the substrate binding domain of P. falciparum Hsp70 (PfHsp70) has been previously shown to exhibit chaperone function when it was expressed in E. coli cells whose resident Hsp70 (DnaK) function was impaired. We proposed that because of its domain constitution, KPf would most likely be recognised by E. coli Hsp70 co-chaperones. Furthermore, because it possesses a substrate binding domain of plasmodial origin, KPf would be primed to recognise recombinant PfAdoMetDC expressed in E. coli. First, using site-directed mutagenesis, followed by complementation assays, we established that KPf with a mutation in the hydrophobic residue located in its substrate binding cavity was functionally compromised. We further co-expressed PfAdoMetDC with KPf, PfHsp70 and DnaK in E. coli cells either in the absence or presence of over-expressed GroEL-GroES chaperonin. The folded and functional status of the produced PfAdoMetDC was assessed using limited proteolysis and enzyme assays. PfAdoMetDC co-expressed with KPf and PfHsp70 exhibited improved activity compared to protein co-expressed with over-expressed DnaK. Our findings suggest that chimeric KPf may be an ideal Hsp70 co-expression partner for the production of recombinant plasmodial proteins in E. coli. 相似文献
46.
Adipocyte differentiation of multipotent cells established from human adipose tissue 总被引:31,自引:0,他引:31
Rodriguez AM Elabd C Delteil F Astier J Vernochet C Saint-Marc P Guesnet J Guezennec A Amri EZ Dani C Ailhaud G 《Biochemical and biophysical research communications》2004,315(2):255-263
In this study multipotent adipose-derived stem cells isolated from human adipose tissue (hMADS cells) were shown to differentiate into adipose cells in serum-free, chemically defined medium. During the differentiation process, hMADS cells exhibited a gene expression pattern similar to that described for rodent clonal preadipocytes and human primary preadipocytes. Differentiated cells displayed the key features of human adipocytes, i.e., expression of specific molecular markers, lipolytic response to agonists of beta-adrenoreceptors (beta2-AR agonist > beta1-AR agonist > beta3-AR agonist) and to the atrial natriuretic peptide, insulin-stimulated glucose transport, and secretion of leptin and adiponectin. hMADS cells were able to respond to drugs as inhibition of adipocyte differentiation was observed in the presence of prostaglandin F2alpha, tumour necrosis factor-alpha, and nordihydroguaiaretic acid, a natural polyhydroxyphenolic antioxidant. Thus, for the first time, human adipose cells with normal karyotype and indefinite life span have been established. They represent a novel and valuable tool for studies of fat tissue development and metabolism. 相似文献
47.
48.
Collodoro M Lemaire P Eppe G Bertrand V Dobson R Mazzucchelli G Widart J De Pauw E De Pauw-Gillet MC 《Journal of Proteomics》2012,75(14):4555-4569
This paper reports the identification of biomarkers resulting from the exposure of MCF-7/BOS cells to 17β-estradiol (E(2)). The biomarkers were identified using 2 independent and complementary techniques, 2-D DIGE/MALDI-TOF peptide mass fingerprint, and 2-D UPLC-ESI MS/MS. They were identified from the cytosolic fractions of cells treated for 24h with mitogenic concentrations of 1, 30 and 500 pM of 17β-estradiol. Five biomarkers were up-regulated proteins, namely HSP 74, EF2, FKBP4, EF1 and GDIB and one was a down-regulated protein, namely K2C8. Three of these proteins, EF2, FKBP4 and K2C8 are implicated in a network centered on the estrogen receptors ESR1 and ESR2 as well as on AKT1. After the discovery phase, three biomarkers were selected to test the presence of estrogens using selected reaction monitoring (SRM). They were monitored using SRM after incubation of MCF-7/BOS in the presence of E(2) for confirmation or selected xenoestrogens. Daidzein, coumestrol and enterolactone induced an up-regulation of EF2 and FKPB4 proteins, while tamoxifen and resveratrol induced a down-regulation. The exposure of all phytoestrogens induced the down-regulation of K2C8. These markers form a preliminary molecular signature that can be used when testing the estrogenic activity of xenobiotics, either pure or in mixtures. 相似文献
49.
G Pérot S Croce A Ribeiro P Lagarde V Velasco A Neuville JM Coindre E Stoeckle A Floquet G MacGrogan F Chibon 《PloS one》2012,7(6):e40015
The relationship between benign uterine leiomyomas and their malignant counterparts, i.e. leiomyosarcomas and smooth muscle tumors of uncertain malignant potential (STUMP), is still poorly understood. The idea that a leiomyosarcoma could derive from a leiomyoma is still controversial. Recently MED12 mutations have been reported in uterine leiomyomas. In this study we asked whether such mutations could also be involved in leiomyosarcomas and STUMP oncogenesis. For this purpose we examined 33 uterine mesenchymal tumors by sequencing the hot-spot mutation region of MED12. We determined that MED12 is altered in 66.6% of typical leiomyomas as previously reported but also in 11% of STUMP and 20% of leiomyosarcomas. The mutated allele is predominantly expressed in leiomyomas and STUMP. Interestingly all classical leiomyomas exhibit MED12 protein expression while 40% of atypical leiomyomas, 50% of STUMP and 80% of leiomyosarcomas (among them the two mutated ones) do not express MED12. All these tumors without protein expression exhibit complex genomic profiles. No mutations and no expression loss were identified in an additional series of 38 non-uterine leiomyosarcomas. MED12 mutations are not exclusive to leiomyomas but seem to be specific to uterine malignancies. A previous study has suggested that MED12 mutations in leiomyomas could lead to Wnt/β-catenin pathway activation however our immunohistochemistry results show that there is no association between MED12 status and β-catenin nuclear/cytoplasmic localization. Collectively, our results show that subgroups of benign and malignant tumors share a common genetics. We propose here that MED12 alterations could be implicated in the development of smooth muscle tumor and that its expression could be inhibited in malignant tumors. 相似文献
50.
Pankaj Kumar Mandal Alexander Seiler Tamara Perisic Pirkko K?lle Ana Banjac Canak Heidi F?rster Norbert Weiss Elisabeth Kremmer Michael W. Lieberman Shiro Bannai Peter Kuhlencordt Hideyo Sato Georg W. Bornkamm Marcus Conrad 《The Journal of biological chemistry》2010,285(29):22244-22253
GSH is the major antioxidant and detoxifier of xenobiotics in mammalian cells. A strong decrease of intracellular GSH has been frequently linked to pathological conditions like ischemia/reperfusion injury and degenerative diseases including diabetes, atherosclerosis, and neurodegeneration. Although GSH is essential for survival, the deleterious effects of GSH deficiency can often be compensated by thiol-containing antioxidants. Using three genetically defined cellular systems, we show here that forced expression of xCT, the substrate-specific subunit of the cystine/glutamate antiporter, in γ-glutamylcysteine synthetase knock-out cells rescues GSH deficiency by increasing cellular cystine uptake, leading to augmented intracellular and surprisingly high extracellular cysteine levels. Moreover, we provide evidence that under GSH deprivation, the cytosolic thioredoxin/thioredoxin reductase system plays an essential role for the cells to deal with the excess amount of intracellular cystine. Our studies provide first evidence that GSH deficiency can be rescued by an intrinsic genetic mechanism to be considered when designing therapeutic rationales targeting specific redox enzymes to combat diseases linked to GSH deprivation. 相似文献