首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   2篇
  2021年   1篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   6篇
  1993年   6篇
  1992年   12篇
  1991年   21篇
  1990年   2篇
  1989年   3篇
  1988年   7篇
  1987年   8篇
  1986年   4篇
  1985年   6篇
  1984年   3篇
  1983年   10篇
  1982年   5篇
  1981年   7篇
  1980年   2篇
  1979年   12篇
  1978年   2篇
  1977年   1篇
排序方式: 共有149条查询结果,搜索用时 31 毫秒
101.
Summary The photographic and electrical conductivity methods to measure the structure of two phase flow, especially bubble size, bubble frequency, local gas hold-up and, for the latter, the bubble velocity are described.Symbols specific interfacial area - a gas/liquid interfacial area - B constant in Eq. (4) - d diameter of the bubbles - d mean diameter of the bubbles - dS Sauter diameter - EG relative gas hold up - I current - kL mass transfer coefficient across the gas/liquid interface - kL local kL - LT–1 - LT–1 - 1 longitudinal distance between the start and stop sensors - 1B pierced length of the bubble - t time - t1 length of the square-wave signal at the start sensor - t2 length of the square-wave signal at the stop sensor - t12 time delay between start and stop signals - V volume of the bubbling layer - VL volume of the bubble free layer - VB bubble volume - vB bubble velocity  相似文献   
102.
103.
A distributed parameter model for simulation of SCP-production processes in tower reactors with an outer loop was developed by considering substrate, cell, and CO(2) balances in the liquid phase, and O(2) and CO(3) balances in the ges phase and taking into account variations of dissolved oxygen concentration, pressure, and k(L)a along the column, as well as double substrate Monod kinetics. This model was used to describe the cultivation of Hansenula polymorpha in a tower-loop reactor (height 275 cm, diameter 15 cm). Parameter identification and process simulation were carried out by a hybrid computer. The variation of identified mass transfer parameters with fermentation time and operation mode is considered employing ethanol and glucose substrate, respectively. Relationships among k(L)a, substrate concentration, and superficial gas velocity were developed to facilitate the layout and simulation of pilot-plant reactors.  相似文献   
104.
The stereospecific hydrolysis of D ,L -phenylalanine methylester with immobilized α-chymotrypsin was carried out as a model reaction for the racemate resolution of aromatic amino acids in a five staged fluidized-bed reactor (FBR). Owing to ester hydrolysis, a pH shift occurred along the reactor. Because of the pH-dependent enzyme activity a particular longitudinal pH profile had to be enforced by a proper entrance pH in order to gain an optimum conversion. In the FBR with optimum pH profile, higher conversions were achieved than in a continuous stirred tank reactor (CSTR) at the pH optimum and at the same contact time. By the application of a proton balance and the results of kinetic measurements a model was developed for the prediction of the optimum longitudinal pH profile with regard to the maximum conversion.  相似文献   
105.
We here report the synthesis of the two polyamine-based nucleoside derivatives 5-{[bis-(3-aminopropyl)amino]acetamido-1-propynyl}uridine and 2-{[bis-(3-aminopropyl)amino]-acetamido-1-propynyl}adenosine. The various polyamine derivatives have been used in thermal melting analysis using DNA from herring testes, and in cellular studies using four different cell lines. The compounds were all found to be non-toxic, thus holding good promise for future use as siRNA building blocks.  相似文献   
106.
Summary Fluorometric measurements were performed in continuous aerobic cultures ofSaccharomyces cerevisiae in order to study the effect of substrate concentration and residence time on the intracellular NADH-level. A modified Beyelermicrofluorometer probe (Beyeler et al. 1981) was used for the experiments. It was possible to use this sensor continuously up to five weeks without problems. The relative NADH-values obtained by the on-line monitoring of the NADH-dependent culture fluorescence were compared to the enzymatically determined NADH-content. Biomass estimation from fluorescence data was performed. During oxidative-reductive catabolism the deviation between calculated and measured data were below 5%. The differences between oxidative and oxidative-reductive catabolism were studied regarding glucose addition, dilution rate increase and aerobic-anaerobic transition. For synchronized continuous cultures, changes in dilution rate resulted in changes of the oscillating behaviour. Flow cytometric studies in comparison with fluorometric studies showed changes in budding behaviour during the oscillations.  相似文献   
107.
Adherent and suspension Baby Hamster Kidney (BHK) 21c13 cells were cultivated in a 2.5-1 stirred-tank reactor with indirect aeration. Cell concentration and viability as well as glucose, lactate, ammonia, and protein concentrations in the medium and intracellular and extracellular activities of the intracellular enzymes were determined off-line. The concentrations of glucose, lactate, ammonia, and the activity of lactate dehydrogenase in the culture medium were monitored on-line. The cell/cell fragment size distribution was determined by laser flow cytometer off-line. In several runs, the size distributions were ascertained on-line by a laser flow cytometer. The influence of lactate, ammonia, and osmotic pressure on the viability and biological parameters of the suspension cells was evaluated. In Roux flasks, lactate and ammonia had considerable influence on the cell properties; in stirred tank reactors, these influences were negligible up to 9.5 g l-1 lactate and 150 mg l-1 NH+4 ion concentrations. The influence of high osmolarity on the biological parameters of the cells was much less in the stirred-tank than in the Roux flasks. The adhesion of adherent cells on a surface was impeded neither by the lactate (up to 6 g l-1) nor by the ammonia concentration (up to 150 mg l-1). However, with increasing osmolarity, the fraction of the cells adhered to a surface reduced to below 5% (at 680 mOsmol l-1).  相似文献   
108.
109.
The advent of superresolution microscopy has opened up new research opportunities into dynamic processes at the nanoscale inside living biological specimens. This is particularly true for synapses, which are very small, highly dynamic, and embedded in brain tissue. Stimulated emission depletion (STED) microscopy, a recently developed laser-scanning technique, has been shown to be well suited for imaging living synapses in brain slices using yellow fluorescent protein as a single label. However, it would be highly desirable to be able to image presynaptic boutons and postsynaptic spines, which together form synapses, using two different fluorophores. As STED microscopy uses separate laser beams for fluorescence excitation and quenching, incorporation of multicolor imaging for STED is more difficult than for conventional light microscopy. Although two-color schemes exist for STED microscopy, these approaches have several drawbacks due to their complexity, cost, and incompatibility with common labeling strategies and fluorophores. Therefore, we set out to develop a straightforward method for two-color STED microscopy that permits the use of popular green-yellow fluorescent labels such as green fluorescent protein, yellow fluorescent protein, Alexa Fluor 488, and calcein green. Our new (to our knowledge) method is based on a single-excitation/STED laser-beam pair to simultaneously excite and quench pairs of these fluorophores, whose signals can be separated by spectral detection and linear unmixing. We illustrate the potential of this approach by two-color superresolution time-lapse imaging of axonal boutons and dendritic spines in living organotypic brain slices.  相似文献   
110.
It is difficult to investigate the mechanisms that mediate long-term changes in synapse function because synapses are small and deeply embedded inside brain tissue. Although recent fluorescence nanoscopy techniques afford improved resolution, they have so far been restricted to dissociated cells or tissue surfaces. However, to study synapses under realistic conditions, one must image several cell layers deep inside more-intact, three-dimensional preparations that exhibit strong light scattering, such as brain slices or brains in vivo. Using aberration-reducing optics, we demonstrate that it is possible to achieve stimulated emission depletion superresolution imaging deep inside scattering biological tissue. To illustrate the power of this novel (to our knowledge) approach, we resolved distinct distributions of actin inside dendrites and spines with a resolution of 60–80 nm in living organotypic brain slices at depths up to 120 μm. In addition, time-lapse stimulated emission depletion imaging revealed changes in actin-based structures inside spines and spine necks, and showed that these dynamics can be modulated by neuronal activity. Our approach greatly facilitates investigations of actin dynamics at the nanoscale within functionally intact brain tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号