首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   819篇
  免费   54篇
  国内免费   4篇
  2022年   7篇
  2021年   6篇
  2020年   10篇
  2019年   4篇
  2018年   17篇
  2017年   17篇
  2016年   21篇
  2015年   25篇
  2014年   37篇
  2013年   41篇
  2012年   45篇
  2011年   30篇
  2010年   28篇
  2009年   22篇
  2008年   31篇
  2007年   35篇
  2006年   30篇
  2005年   22篇
  2004年   32篇
  2003年   18篇
  2002年   32篇
  2001年   27篇
  2000年   18篇
  1999年   20篇
  1998年   10篇
  1997年   12篇
  1996年   14篇
  1995年   12篇
  1994年   17篇
  1993年   18篇
  1992年   24篇
  1991年   15篇
  1990年   12篇
  1989年   12篇
  1988年   13篇
  1987年   12篇
  1986年   12篇
  1985年   13篇
  1984年   10篇
  1983年   6篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1978年   6篇
  1977年   8篇
  1969年   5篇
  1950年   5篇
  1928年   4篇
  1903年   2篇
  1876年   2篇
排序方式: 共有877条查询结果,搜索用时 15 毫秒
31.
32.
33.
34.
35.
Human T-cell leukemia virus type I (HTLV-I) can infect a variety of human cell types, but only T lymphocytes are efficiently immortalized after HTLV-I infection. This study reports an attempt to infect and to immortalize NK cells with HTLV-I. Co-cultivation of freshly isolated NK cells with a HTLV-I-producing T cell line did not result in NK cell infection. However, NK cells activated with an anti-CD16 mAb and co-cultivated with a HTLV-I-producing T cell line were reproducibly infected by HTLV-I. HTLV-I infection was documented in NK cell lines and clones by the detection of defective integrated provirus by both Southern blot and polymerase chain reaction analysis. Although HTLV-I-infected NK cells produced viral proteins, they did not produce infectious viral particles. HTLV-I-infected NK cells were phenotypically indistinguishable from their uninfected counterparts (CD16+, CD2+, CD56+, CD3-). They also retained the ability to mediate both natural and antibody-dependent cell cytotoxicity. The IL-2-dependent proliferation of HTLV-I-infected NK cells was significantly greater than that of uninfected NK cells. The doubling time of this infected population was reduced from 9 days to 3 days, and the overall survival of the culture in the absence of restimulation was extended from 5 wk to 18 wk. Unlike T lymphocytes, HTLV-I-infected NK cells were not immortal, implying a fundamental difference between these two lymphocyte populations.  相似文献   
36.
Total coliform counts obtained by means of standard membrane filtration techniques, using MacConkey agar, m-Endo LES agar, Teepol agar, and pads saturated with Teepol broth as growth media, were compared. Various combinations of these media were used in tests on 490 samples of river water and city wastewater after different stages of conventional purification and reclamation processes including lime treatment, and filtration, active carbon treatment, ozonation, and chlorination. Endo agar yielded the highest average counts for all these samples. Teepol agar generally had higher counts then Teepol broth, whereas MacConkey agar had the lowest average counts. Identification of 871 positive isolates showed that Aeromonas hydrophila was the species most commonly detected. Species of Escherichia, Citrobacter, Klebsiella, and Enterobacter represented 55% of isolates which conformed to the definition of total coliforms on Endo agar, 54% on Teepol agar, and 45% on MacConkey agar. Selection for species on the media differed considerably. Evaluation of these data and literature on alternative tests, including most probable number methods, indicated that the technique of choice for routine analysis of total coliform bacteria in drinking water is membrane filtration using m-Endo LES agar as growth medium without enrichment procedures or a cytochrome oxidase restriction.  相似文献   
37.
38.
Sea water temperature affects all biological and ecological processes that ultimately impact ecosystem functioning. In this study, we examine the influence of temperature on global biomass transfers from marine secondary production to fish stocks. By combining fisheries catches in all coastal ocean areas and life‐history traits of exploited marine species, we provide global estimates of two trophic transfer parameters which determine biomass flows in coastal marine food web: the trophic transfer efficiency (TTE) and the biomass residence time (BRT) in the food web. We find that biomass transfers in tropical ecosystems are less efficient and faster than in areas with cooler waters. In contrast, biomass transfers through the food web became faster and more efficient between 1950 and 2010. Using simulated changes in sea water temperature from three Earth system models, we project that the mean TTE in coastal waters would decrease from 7.7% to 7.2% between 2010 and 2100 under the ‘no effective mitigation’ representative concentration pathway (RCP8.5), while BRT between trophic levels 2 and 4 is projected to decrease from 2.7 to 2.3 years on average. Beyond the global trends, we show that the TTEs and BRTs may vary substantially among ecosystem types and that the polar ecosystems may be the most impacted ecosystems. The detected and projected changes in mean TTE and BRT will undermine food web functioning. Our study provides quantitative understanding of temperature effects on trophodynamic of marine ecosystems under climate change.  相似文献   
39.
The purpose of this study was to develop a physicomechanically customizable oral metal chelatory in situ hot melt dispersion mini-pellet entity which could be utilized within a binary drug delivery system. Avicel® RC/CL type R-591 was included within the in situ hot melt dispersion mini-pellet formulations to determine the physicomechanical effect this compound would have on the mini-pellet formulations. The physicomechanical properties of the hot melt in situ mini-pellet formulations were mathematically fitting to regression curves. Physicomechanical adjustment of the in situ hot melt dispersion mini-pellet formulations could be mathematically predicted with the derived regression curve equations. The addition of Avicel® RC/CL type R-591 increased the physicomechanical properties such as matrix hardness and increased total disintegration of the in situ hot melt dispersion mini-pellet formulations. The utilization of a physicomechanically customizable oral metal chelatory in situ hot melt dispersion mini-pellet entity within a binary drug delivery system would to achieve a synergistically enhance the activity of a drug-carrying entity or a permeation enhancing entity within a single drug delivery unit. The experimental results indicated that weights of the pellets that achieved optimal hardness ranged between 35 and 45 mg. The melt–dispersion formulations disintegrated within shorter time periods and maintained higher ethylenediaminetetraacetic acid (EDTA) concentrations whereas melt–dispersion formulations which included Avicel® had superior physicomechanical properties. Disintegration times ranged between 1,000 s for melt–dispersions containing EDTA and methyloxy polyethylene glycol 2000 (mPEG) only, to >6,000 s for melt–dispersions comprising EDTA, mPEG, and Avicel®.  相似文献   
40.
Polymers are extensively used in the pharmaceutical and medical field because of their unique and phenomenal properties that they display. They are capable of demonstrating drug delivery properties that are smart and novel, such properties that are not achievable by employing the conventional excipients. Appropriately, polymeric refabrication remains at the forefront of process technology development in an endeavor to produce more useful pharmaceutical and medical products because of the multitudes of smart properties that can be attained through the alteration of polymers. Small alterations to a polymer by either addition, subtraction, self-reaction, or cross reaction with other entities have the capability of generating polymers with properties that are at the level to enable the creation of novel pharmaceutical and medical products. Properties such as stimuli-responsiveness, site targeting, and chronotherapeutics are no longer figures of imaginations but have become a reality through utilizing processes of polymer refabrication. This article has sought to review the different techniques that have been employed in polymeric refabrication to produce superior products in the pharmaceutical and medical disciplines. Techniques such as grafting, blending, interpenetrating polymers networks, and synthesis of polymer complexes will be viewed from a pharmaceutical and medical perspective along with their synthetic process required to attain these products. In addition to this, each process will be evaluated according to its salient features, impeding features, and the role they play in improving current medical devices and procedures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号