首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8318篇
  免费   672篇
  国内免费   2篇
  8992篇
  2023年   83篇
  2022年   144篇
  2021年   283篇
  2020年   230篇
  2019年   227篇
  2018年   340篇
  2017年   263篇
  2016年   398篇
  2015年   491篇
  2014年   516篇
  2013年   596篇
  2012年   689篇
  2011年   639篇
  2010年   394篇
  2009年   350篇
  2008年   416篇
  2007年   416篇
  2006年   392篇
  2005年   250篇
  2004年   258篇
  2003年   225篇
  2002年   197篇
  2001年   158篇
  2000年   156篇
  1999年   128篇
  1998年   66篇
  1997年   58篇
  1996年   54篇
  1995年   37篇
  1994年   38篇
  1993年   34篇
  1992年   56篇
  1991年   40篇
  1990年   25篇
  1989年   51篇
  1988年   28篇
  1987年   25篇
  1986年   17篇
  1985年   21篇
  1984年   33篇
  1983年   24篇
  1982年   20篇
  1981年   10篇
  1980年   10篇
  1979年   9篇
  1978年   14篇
  1975年   8篇
  1974年   12篇
  1971年   10篇
  1968年   7篇
排序方式: 共有8992条查询结果,搜索用时 15 毫秒
171.
An ideal chemotherapeutic strategy would be to deliver a high concentration of drug that would be released in sustained small amounts from targeted microspheres to effectively kill only the tumour cells and thus reduce toxicity to normal tissue. Clonogenic and cell survival growth curve assays, as well as the micronucleus assay, were used to determine the feasibility of employing targeted immunomicrospheres in the treatment of cancer. Cells of a rodent ovarian carcinoma cell line, were exposed to cisplatin and 5-fluorouracil, either as free drug or encapsulated in albumin microspheres that were either conjugated to monoclonal antibodies or not. In cell survival growth curve assays, cell survival was reduced to 1.2% of the control when cells were treated with drug-containing immunomicrospheres. 3.2-fold more micronuclei were found in those cells that had been exposed to the drugs in immunomicrospheres than in those subjected to untargeted microspheres. All three assays demonstrated that the targeted immunomicrospheres were more effective in delivering cisplatin and 5-fluorouracil directly to the cells than the unconjugated microspheres, thus suggesting that targeted chemotherapy might be a more effective option in the treatment of cancer.  相似文献   
172.
The effects of eugenol (1-2000 microM) on rat isolated ileum were studied. Eugenol relaxed the basal tonus (IC50 83 microM) and the ileum precontracted with 60 mM KCl (IC50 162 microM), an action unaltered by 0.5 microM tetrodotoxin, 0.2 mM N(G)-nitro-L-arginine methyl ester, 0.5 mM hexamethonium, and 1 microM indomethacin. Eugenol did not alter the resting transmembrane potential (Em) of the longitudinal muscle layer under normal conditions (5.0 mM K+) or in depolarised tissues. Eugenol reversibly inhibited contractions induced by submaximal concentrations of acetylcholine (ACh) and K+ (40 mM) with IC50 values of approximately 228 and 237 microM, respectively. Eugenol blocked the component of ACh-induced contraction obtained in Ca(2+)-free solution (0.2 mM EGTA) or in the presence of nifedipine (1 microM). Our results suggest that eugenol induces relaxation of rat ileum by a direct action on smooth muscle via a mechanism largely independent of alterations of Em and extracellular Ca2+ influx.  相似文献   
173.
The effect of replacing bis(trifluoromethylsulphonyl)imide ([NTf2]) by hexafluorophosphate ([PF6]) in room temperature ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethylsulphonyl)imide ([BMIm][NTf2]) confined between two gold interfaces is herein reported through molecular dynamics simulations using all-atom non-polarisable force-fields. Five systems were studied ranging from pure [BMIm][NTf2] to pure [BMIm][PF6], with [PF6] molar fractions of 0, 0.125, 0.25, 0.375 and 0.5. Special attention was drawn to investigate the impact of the [PF6] anion on the IL, in particular on the first layers of the liquid in close contact with the solid gold surface.  相似文献   
174.
DNA methylation has been referred as an important player in plant genomic responses to environmental stresses but correlations between the methylome plasticity and specific traits of interest are still far from being understood. In this study, we inspected global DNA methylation levels in salt tolerant and sensitive rice varieties upon salt stress imposition. Global DNA methylation was quantified using the 5-methylcytosine (5mC) antibody and an ELISA-based technique, which is an affordable and quite pioneer assay in plants, and in situ imaging of methylation sites in interphase nuclei of tissue sections. Variations of global DNA methylation levels in response to salt stress were tissue- and genotype-dependent. We show a connection between a higher ability of DNA methylation adjustment levels and salt stress tolerance. The salt-tolerant rice variety Pokkali was remarkable in its ability to quickly relax DNA methylation in response to salt stress. In spite of the same tendency for reduction of global methylation under salinity, in the salt-sensitive rice variety IR29 such reduction was not statistically supported. In ‘Pokkali’, the salt stress-induced demethylation may be linked to active demethylation due to increased expression of DNA demethylases under salt stress. In ‘IR29’, the induction of both DNA demethylases and methyltransferases may explain the lower plasticity of DNA methylation. We further show that mutations for epigenetic regulators affected specific phenotypic parameters related to salinity tolerance, such as the root length and biomass. This work emphasizes the role of differential methylome flexibility between salt tolerant and salt sensitive rice varieties as an important player in salt stress tolerance, reinforcing the need to better understand the connection between epigenetic networks and plant responses to environmental stresses.  相似文献   
175.
Distance and discrete geographic barriers play a role in isolating populations, as seed and pollen dispersal become limited. Nearby populations without any geographic barrier between them may also suffer from ecological isolation driven by habitat heterogeneity, which may promote divergence by local adaptation and drift. Likewise, elevation gradients may influence the genetic structure and diversity of populations, particularly those marginally distributed. Bathysa australis (Rubiaceae) is a widespread tree along the elevation gradient of the Serra do Mar, SE Brazil. This self‐compatible species is pollinated by bees and wasps and has autochoric seeds, suggesting restricted gene dispersal. We investigated the distribution of genetic diversity in six B. australis populations at two extreme sites along an elevation gradient: a lowland site (80–216 m) and an upland site (1010–1100 m.a.s.l.). Nine microsatellite loci were used to test for genetic structure and to verify differences in genetic diversity between sites. We found a marked genetic structure on a scale as small as 6 km (FST = 0.21), and two distinct clusters were identified, each corresponding to a site. Although B. australis is continuously distributed along the elevation gradient, we have not observed a gene flow between the extreme populations. This might be related to B. australis biological features and creates a potential scenario for adaptation to the different conditions imposed by the elevation gradient. We failed to find an isolation‐by‐distance pattern; although on the fine scale, all populations showed spatial autocorrelation until ~10‐20 m. Elevation difference was a relevant factor though, but we need further sampling effort to check its correlation with genetic distance. The lowland populations had a higher allelic richness and showed higher rare allele counts than the upland ones. The upland site may be more selective, eliminating rare alleles, as we did not find any evidence for bottleneck.  相似文献   
176.
177.
178.
Many of the marine microorganisms which are adapted to grow at temperatures above 80°C accumulate di-myo-inositol phosphate (DIP) in response to heat stress. This led to the hypothesis that the solute plays a role in thermoprotection, but there is a lack of definitive experimental evidence. Mutant strains of Thermococcus kodakarensis (formerly Thermococcus kodakaraensis), manipulated in their ability to synthesize DIP, were constructed and used to investigate the involvement of DIP in thermoadaptation of this archaeon. The solute pool of the parental strain comprised DIP, aspartate, and α-glutamate. Under heat stress the level of DIP increased 20-fold compared to optimal conditions, whereas the pool of aspartate increased 4.3-fold in response to osmotic stress. Deleting the gene encoding the key enzyme in DIP synthesis, CTP:inositol-1-phosphate cytidylyltransferase/CDP-inositol:inositol-1-phosphate transferase, abolished DIP synthesis. Conversely, overexpression of the same gene resulted in a mutant with restored ability to synthesize DIP. Despite the absence of DIP in the deletion mutant, this strain exhibited growth parameters similar to those of the parental strain, both at optimal (85°C) and supraoptimal (93.7°C) temperatures for growth. Analysis of the respective solute pools showed that DIP was replaced by aspartate. We conclude that DIP is part of the strategy used by T. kodakarensis to cope with heat stress, and aspartate can be used as an alternative solute of similar efficacy. This is the first study using mutants to demonstrate the involvement of compatible solutes in the thermoadaptation of (hyper)thermophilic organisms.Hyperthermophilic bacteria and archaea isolated from saline environments accumulate unusual organic solutes in response to osmotic as well as heat stress. Mannosylglycerate, mannosylglyceramide, di-myo-inositol phosphate, mannosyl-di-myo-inositol phosphate (DIP), diglycerol phosphate, and glycero-phospho-myo-inositol are examples of compatible solutes highly restricted to thermophiles and hyperthermophiles (27, 31). Our team has, over several years, examined the compatible solute composition in a large number of hyperthermophiles and their accumulation under stressful conditions. The data reveal a trend toward specialization of roles in thermoadaptation and osmoadaptation. Indeed, mannosylglycerate and diglycerol phosphate typically accumulate in response to increased NaCl concentration in the growth medium, whereas the levels of DIP and derivatives consistently increase at supraoptimal growth temperatures (11, 16, 17, 27, 31).DIP is widespread among extreme archaeal hyperthermophiles, such as Methanotorris igneus, Aeropyrum pernix, Stetteria hydrogenophila, Pyrodictium occultum, Pyrolobus fumarii, Archaeoglobus spp., and all the members of the Thermococcales examined thus far, except Palaeococcus ferrophilus (5, 7, 11, 13, 16, 18, 31). This organic solute has also been found in representatives of the two hyperthermophilic bacterial genera, Aquifex and Thermotoga (14, 17, 22).The specific chemical nature of solutes encountered in hyperthermophiles, together with their accumulation in response to elevated temperatures, led to the hypothesis that they play a role in thermoprotection of cellular components in vivo. However, there is a lack of convincing experimental evidence, such as that obtained with suitable mutants. Progress toward understanding the physiological functions of these solutes critically depends on two conditions: the availability of genetic tools to manipulate hyperthermophilic organisms and knowledge about the genes and enzymes implicated in the synthesis of these unusual solutes.Thermococcus kodakarensis (formerly Thermococcus kodakaraensis) is a member of the order Thermococcales with an optimal growth temperature of 85°C and is able to grow at temperatures up to 94°C in batch cultures. The NaCl concentration for optimal growth matches that of seawater (1). T. kodakarensis is the only marine hyperthermophile for which a number of genetic tools have been developed, including Escherichia coli-T. kodakarensis shuttle vectors and a reliable gene disruption system (19, 29, 32, 34). The genome of T. kodakarensis possesses a gene encoding CTP:inositol-1-phosphate cytidylyltransferase/CDP-inositol:inositol-1-phosphate transferase (IPCT/DIPPS), a key enzyme in DIP synthesis (2, 25, 26). This enzyme catalyzes the synthesis of CDP-inositol from CTP and inositol-1-phosphate as well as the transfer of the inositol group from CDP-inositol to a second molecule of inositol-1-phosphate to yield a phosphorylated form of DIP (2). Therefore, we set out to investigate whether DIP was involved in thermoadaptation of T. kodakarensis. A DIP-deficient mutant was constructed by deleting the IPCT/DIPPS gene; subsequently, this strain was complemented in this activity by inserting the gene under the control of a constitutive promoter, resulting in a construct with restored ability to synthesize DIP. The effects of heat and osmotic stress on the pattern of solute accumulation and on the growth profiles of the two mutants provided evidence for the involvement of DIP in thermoprotection.  相似文献   
179.
The effect of changing dilution rate (D) on Bacillus sp. CCMI 1051 at dilution rates between 0.1 and 0.55 h−1 in a glucose-limited medium was studied. Biomass values varied between 0.88 and 1.1 g L−1 at D values of 0.15–0.35 h−1. Maximal biomass productivity was found to be 0.39 g L−1 h−1, obtained at D = 0.35 h−1 and corresponding to a 54.4% conversion of the carbon into cell mass. The highest rate of glucose consumption was 4.45 mmol g−1 h−1 occurring at D = 0.4 h−1. The glucose concentration inside the chemostat was below the detection level starting to accumulate around 0.4 h−1. Growth inhibition of fifteen strains of fungi by the broth of the steady-state cell-free supernatants was assessed. Results showed that the relative inhibition differ among the target species but was not influenced by the dilution rate changing.  相似文献   
180.
Phytophthora spp. are serious pathogens that threaten numerous cultivated crops, trees, and natural vegetation worldwide. The soybean pathogen P. sojae has been developed as a model oomycete. Here, we report a bacterial artificial chromosome (BAC)-based, integrated physical map of the P. sojae genome. We constructed two BAC libraries, digested 8,681 BACs with seven restriction enzymes, end labeled the digested fragments with four dyes, and analyzed them with capillary electrophoresis. Fifteen data sets were constructed from the fingerprints, using individual dyes and all possible combinations, and were evaluated for contig assembly. In all, 257 contigs were assembled from the XhoI data set, collectively spanning approximately 132 Mb in physical length. The BAC contigs were integrated with the draft genome sequence of P. sojae by end sequencing a total of 1,440 BACs that formed a minimal tiling path. This enabled the 257 contigs of the BAC map to be merged with 207 sequence scaffolds to form an integrated map consisting of 79 superscaffolds. The map represents the first genome-wide physical map of a Phytophthora sp. and provides a valuable resource for genomics and molecular biology research in P. sojae and other Phytophthora spp. In one illustration of this value, we have placed the 350 members of a superfamily of putative pathogenicity effector genes onto the map, revealing extensive clustering of these genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号