首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63389篇
  免费   4255篇
  国内免费   21篇
  2023年   425篇
  2022年   929篇
  2021年   1667篇
  2020年   1062篇
  2019年   1374篇
  2018年   1790篇
  2017年   1523篇
  2016年   2386篇
  2015年   3412篇
  2014年   3674篇
  2013年   4789篇
  2012年   5477篇
  2011年   5162篇
  2010年   3182篇
  2009年   2759篇
  2008年   3701篇
  2007年   3591篇
  2006年   3228篇
  2005年   2823篇
  2004年   2666篇
  2003年   2506篇
  2002年   2210篇
  2001年   663篇
  2000年   517篇
  1999年   584篇
  1998年   530篇
  1997年   393篇
  1996年   361篇
  1995年   323篇
  1994年   328篇
  1993年   292篇
  1992年   276篇
  1991年   249篇
  1990年   233篇
  1989年   202篇
  1988年   189篇
  1987年   189篇
  1986年   154篇
  1985年   162篇
  1984年   168篇
  1983年   123篇
  1982年   124篇
  1981年   119篇
  1980年   115篇
  1979年   124篇
  1978年   77篇
  1977年   77篇
  1976年   66篇
  1975年   75篇
  1973年   83篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
The evolutionarily broad family nucleobase-cation symporter-2 (NCS2) encompasses transporters that are conserved in binding site architecture but diverse in substrate selectivity. Putative purine transporters of this family fall into one of two homology clusters: COG2233, represented by well studied xanthine and/or uric acid permeases, and COG2252, consisting of transporters for adenine, guanine, and/or hypoxanthine that remain unknown with respect to structure-function relationships. We analyzed the COG2252 genes of Escherichia coli K-12 with homology modeling, functional overexpression, and mutagenesis and showed that they encode high affinity permeases for the uptake of adenine (PurP and YicO) or guanine and hypoxanthine (YjcD and YgfQ). The two pairs of paralogs differ clearly in their substrate and ligand preferences. Of 25 putative inhibitors tested, PurP and YicO recognize with low micromolar affinity N6-benzoyladenine, 2,6-diaminopurine, and purine, whereas YjcD and YgfQ recognize 1-methylguanine, 8-azaguanine, 6-thioguanine, and 6-mercaptopurine and do not recognize any of the PurP ligands. Furthermore, the permeases PurP and YjcD were subjected to site-directed mutagenesis at highly conserved sites of transmembrane segments 1, 3, 8, 9, and 10, which have been studied also in COG2233 homologs. Residues irreplaceable for uptake activity or crucial for substrate selectivity were found at positions occupied by similar role amino acids in the Escherichia coli xanthine- and uric acid-transporting homologs (XanQ and UacT, respectively) and predicted to be at or around the binding site. Our results support the contention that the distantly related transporters of COG2233 and COG2252 use topologically similar side chain determinants to dictate their function and the distinct purine selectivity profiles.  相似文献   
42.
43.
44.
The 10-subunit RNA exosome is involved in a large number of diverse RNA processing and degradation events in eukaryotes. These reactions are carried out by the single catalytic subunit, Rrp44p/Dis3p, which is composed of three parts that are conserved throughout eukaryotes. The exosome is named for the 3′ to 5′ exoribonuclease activity provided by a large C-terminal region of the Rrp44p subunit that resembles other exoribonucleases. Rrp44p also contains an endoribonuclease domain. Finally, the very N-terminus of Rrp44p contains three Cys residues (CR3 motif) that are conserved in many eukaryotes but have no known function. These three conserved Cys residues cluster with a previously unrecognized conserved His residue in what resembles a metal-ion-binding site. Genetic and biochemical data show that this CR3 motif affects both endo- and exonuclease activity in vivo and both the nuclear and cytoplasmic exosome, as well as the ability of Rrp44p to associate with the other exosome subunits. These data provide the first direct evidence that the exosome-Rrp44p interaction is functionally important and also provides a molecular explanation for the functional defects when the conserved Cys residues are mutated.  相似文献   
45.
Although it is generally assumed that among mammals and within mammal groups, those species that rely on diets consisting of greater amounts of plant fiber have larger gastrointestinal tracts (GIT), statistical evidence for this simple claim is largely lacking. We compiled a dataset on the length of the small intestine, caecum, and colon in 42 strepsirrhine, platyrrhine, and catarrhine primate species, using specimens with known body mass (BM). We tested the scaling of intestine length with BM, and whether dietary proxies (percentage of leaves and a diet quality index) were significant covariates in these scaling relationships, using two sets of models: one that did not account for the phylogenetic structure of the data, and one that did. Intestine length mainly scaled geometrically at exponents that included 0.33 in the confidence interval; Strepsirrhini exhibited particularly long caeca, while those of Catarrhini were comparatively short. Diet proxies were only significant for the colon and the total large intestine (but not for the small intestine or the caecum), and only in conventional statistics (but not when accounting for phylogeny), indicating the pattern occurred across but not within clades. Compared to terrestrial Carnivora, primates have similar small intestine lengths, but longer large intestines. The data on intestine lengths presented here corroborate recent results on GIT complexity, suggesting that diet, as currently described, does not exhaustively explain GIT anatomy within primate clades.  相似文献   
46.
47.
By freezing blocks of paraffin-embedded tissues to a convenient temperature it is possible to obtain routinely 1 micron sections that can be further processed as normal thicker sections. Normal and disposable steel knives can be used and the staining time should be increased in most procedures. Gradual freezing of blocks to the temperature of dry ice is the simplest and safest way to obtain an adequate temperature. The best results were obtained using as fixative 4% paraformaldehyde in phosphate buffered saline solution.  相似文献   
48.
49.
Transthyretin (TTR) protects against A-Beta toxicity by binding the peptide thus inhibiting its aggregation. Previous work showed different TTR mutations interact differently with A-Beta, with increasing affinities correlating with decreasing amyloidogenecity of the TTR mutant; this did not impact on the levels of inhibition of A-Beta aggregation, as assessed by transmission electron microscopy. Our work aimed at probing differences in binding to A-Beta by WT, T119M and L55P TTR using quantitative assays, and at identifying factors affecting this interaction. We addressed the impact of such factors in TTR ability to degrade A-Beta. Using a dot blot approach with the anti-oligomeric antibody A11, we showed that A-Beta formed oligomers transiently, indicating aggregation and fibril formation, whereas in the presence of WT and T119M TTR the oligomers persisted longer, indicative that these variants avoided further aggregation into fibrils. In contrast, L55PTTR was not able to inhibit oligomerization or to prevent evolution to aggregates and fibrils. Furthermore, apoptosis assessment showed WT and T119M TTR were able to protect against A-Beta toxicity. Because the amyloidogenic potential of TTR is inversely correlated with its stability, the use of drugs able to stabilize TTR tetrameric fold could result in increased TTR/A-Beta binding. Here we showed that iododiflunisal, 3-dinitrophenol, resveratrol, [2-(3,5-dichlorophenyl)amino] (DCPA) and [4-(3,5-difluorophenyl)] (DFPB) were able to increase TTR binding to A-Beta; however only DCPA and DFPB improved TTR proteolytic activity. Thyroxine, a TTR ligand, did not influence TTR/A-Beta interaction and A-Beta degradation by TTR, whereas RBP, another TTR ligand, not only obstructed the interaction but also inhibited TTR proteolytic activity. Our results showed differences between WT and T119M TTR, and L55PTTR mutant regarding their interaction with A-Beta and prompt the stability of TTR as a key factor in this interaction, which may be relevant in AD pathogenesis and for the design of therapeutic TTR-based therapies.  相似文献   
50.
The synthesis and characterization of rare-earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y) thiocyanate adducts with tripiperidinophosphine oxide (tpppO) with general formula (RE)(SCN)3(tpppO)3 are reported. Conductance measurements in acetonitrile indicate the non-electrolytic nature of the complexes. Infrared absorption spectra evidence that the SCN ion coordinates through the nitrogen atom (isothiocyanate form) and that tpppO coordinates through the phosphoryl oxygen. X-ray powder patterns suggest the existence of three different crystal forms: (1) La; (2) an isomorphous series including Ce, Nd and Pr; and (3) another isomorphous series, including Sm, Gd, Eu, Ho, Er, Tb, Lu and Y. The visible spectra of the Nd adduct and the calculated parameters β = 0.98, b1/2 = 0.072 and δ = 1.06 indicate that the metal-ligand bonds are essentially electrostactic. The emission spectra of the Eu compound showed 5D0 → 7FJ bands (J = 0, 1, 2), suggesting a C3v symmetry for the coordination polyhedron. The lifetime of the 5D0 state is 1.28 ms. The emission spectra of the Tb complex presented 5D4 → 7FJ bands (J = 4, 5, 6) and the Dy complex showed the 4F9/2 → 6H13/2 band. The structure of the Pr complex showed that the coordination polyhedron is a trigonal antiprism, with the isothiocyanate anions in one base and three tpppO ligands in the other. Thermal analyses (TG-DTG) were carried out for the Ce, Nd and Gd adducts. Mass losses start between 250 and 334 °C. The final residues at 1300 °C are the corresponding phosphates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号