首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   0篇
  63篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   5篇
  2001年   1篇
  2000年   2篇
  1999年   5篇
  1998年   4篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1982年   1篇
  1980年   3篇
  1979年   8篇
  1978年   6篇
  1976年   1篇
排序方式: 共有63条查询结果,搜索用时 78 毫秒
21.
The human alpha 1-proteinase inhibitor (alpha 1-PI) and its reactive site modified form (alpha 1-PI*) have been examined using the fluorescence quenching resolved spectra method. The red-edge excitation measurements were applied for the study of structural differences between these forms. The crystallographic data of alpha 1-PI* structure have shown that its polypeptide chain includes only two tryptophan residues. The fluorescence quenching data have indicated that the conversion of the intact inhibitor molecule into its nicked form is accompanied by changes in the tryptophan environments. The red-edge excitation measurements have proved that the dipolar relaxation process around the Trp-194 residue is much bigger in alpha 1-PI* form than in the nicked one.  相似文献   
22.
A frequency-domain fluorescence study of calcium-binding metalloproteinase from Staphylococcus aureus has shown that this two-tryptophan-containing protein exhibits a double-exponential fluorescence decay. At 10 degrees C in 0.05 M Tris-HCl buffer (pH 9.0) containing 10 mM CaCl2, fluorescence lifetimes of 1.2 and 5.1 ns are observed. Steady-state and frequency-domain solute-quenching studies are consistent with the assignment of the two lifetimes to the two tryptophan residues. The tryptophan residue characterized by a shorter lifetime has a maximum of fluorescence emission at about 317 nm and the second one exhibits a maximum of its emission at 350 nm. These two residues contribute almost equally to the protein's fluorescence. These results, as well as fluorescence-quenching studies using KI and acrylamide as a quencher, indicate that in calcium-loaded metalloproteinase, the tryptophan residue characterized by the shorter lifetime is extensively buried within the protein. The second residue is exposed on the surface of the protein. The tryptophan residues of metalloproteinase have acrylamide dynamic-quenching rate constants, kq values, of 2.3 and 0.26 X 10(9) M-1 X s-1 for the exposed and buried residue, respectively. A study of the temperature dependence of the fluorescence lifetime for the two tryptophan components gives activation energies, Ea values, for thermal quenching of 1.8 and 2.2 kcal/mol for the buried and the exposed residue, respectively. Dissociation of Ca2+ from the protein causes a change in the protein's structure, as can be judged from dramatic changes which occur in the fluorescence properties of the buried tryptophan residue. These changes include an approx. 13 nm red-shift in the maximum of the fluorescence emission and an increase in the acrylamide-quenching rate constant, and they indicate that the removal of Ca2+ results in an increase in the exposure and the polarity of the microenvironment of this 'blue' residue.  相似文献   
23.
A frequency domain fluorescence study of yeast phosphoglycerate kinase has been performed to observe the effect of substrates on the structure and dynamics of the enzyme. At 20 degrees C and pH 7.2, a biexponential decay is observed for tryptophanyl emission. The short fluorescence lifetime (0.4 ns) component is associated with a spectrum having a 329-nm maximum and a 18.4-kJ/mol activation energy, Ea, for thermal quenching. The long-lifetime (3.5 ns) component has a 338-nm maximum and an Ea of only 7.9 kJ/mol. Tentatively we assign the short and long-lifetime components to Trp-333 and Trp-308. Binding of the substrates ATP and 3-phosphoglycerate leads to a significant increase in the fluorescence lifetime, the red shift of the emission spectrum and in the decrease in the Ea for both components. Acrylamide-quenching studies indicate that the two tryptophan residues have about the same degree of kinetic exposure to the quencher and that the binding of the substrates causes a very slight change in the quenching pattern. These fluorescence studies indicate that the binding of the substrates to phosphoglycerate kinase may influence the conformational dynamics around the two tryptophan residues located on one of the protein's domains.  相似文献   
24.
25.
Time-resolved, steady-state fluorescence and fluorescence-detected circular dichroism (FDCD) have been used to resolve the fluorescence contributions of the two tryptophan residues, Trp-13 and Trp-85, in the cyclic AMP receptor protein (CRP). The iodide and acrylamide quenching data show that in CRP one tryptophan residue, Trp-85, is buried within the protein matrix and the other, Trp-13, is moderately exposed on the surface of the protein. Fluorescence-quenching-resolved spectra show that Trp-13 has emission at about 350 nm and contributes 76–83% to the total fluorescence emission. The Trp-85, unquenchable by iodide and acrylamide, has the fluorescence emission at about 337 nm. The time-resolved fluorescence measurements show that Trp-13 has a longer fluorescence decay time. The Trp-85 exhibits a shorter fluorescence decay time. In the CRP-cAMP complex the Trp-85, previously buried in the apoprotein becomes totally exposed to the iodide and acrylamide quenchers. The FDCD spectra indicate that in the CRP-cAMP complex Trp-85 remains in the same environment as in the protein alone. It has been proposed that the binding of cAMP to CRP is accompanied by a hinge reorientation of two protein domains. This allows for penetration of the quencher molecules into the Trp-85 residue previously buried in the protein matrix.Abbreviations CRP cyclic AMP receptor protein - NATA N-acetyltryptophanamide - FQRS fluorescence-quenching-resolved spectra - FDCD fluorescence-detected circular dichroism - EDTA ethylenediaminetetraacetic acid - SDS sodium dodecyl sulfate - FPLC fast protein liquid chromatography  相似文献   
26.
Viscosity, gel filtration and spin-labelling methods have been used to study the influence of alkylpyridinium bromides on the conformation of bovine serum albumin and other proteins. Cationic detergents cause partial unfolding of the native protein molecules. The magnitude of these changes increases with increasing length of the detergent hydrocarbon chain. When cationic detergents are added to reduced and carboxymethylated bovine serum albumin the observed changes are opposite to those found in native protein.  相似文献   
27.
The binding isotherms of bovine serum albumin with octylglucoside and decyl glucoside were determined at 7 degrees C and 25 degrees C at pH 7.4 and ionic strength 0.1 M. The average number of detergent molecules bound was found to increase with increasing hydrocarbon chain length. Competitive binding indicates that alkylglycosides combine with the same sites as alkyl sulphates. Native bovine serum albumin has about 12 and 10 sites for non-ionic ligands at 7 degrees C and about 15 and 13 sites at 25 degrees C for octyl and decyl glucosides respectively. The values for standard free energy changes--delta G0, were calculated from the intrinsic association constants. Fourier-transformed infrared spectroscopy was used to study the effects of alkyl glucosides on the conformation of albumin. The results obtained indicate that there are no significant changes in protein structure.  相似文献   
28.
Riboflavin binding (or carrier) protein (RfBP) is a monomeric, two-domain protein, originally purified from hens' egg white. RfBP contains nine disulfide bridges; as a result, the protein forms a compact structure and undergoes reversible three-state thermal denaturation. This was demonstrated using a differential scanning calorimetry (DSC) method [Wasylewski M. (2000) J. Prot. Chem. 19(6), 523-528]. It has been shown that the RfBP complex with riboflavin denaturates in a three-state process which may be attributed to sequential unfolding of the RfBP domains. In case of apo RfBP, the ligand binding domain denaturates at a lower temperature than the C-terminal domain. Ligand binding greatly enhances the thermostability of the N-terminal domain, whereas the C-terminal domain thermostability is only slightly affected and, in case of the examined holo RfBPs, the denaturation peaks of both domains merge or cross over. The magnitude of the changes depends on ligand structure. A detailed study of protein concentration effects carried out in this work allowed to estimate not only the thermostability of both domains but also the strength of domain interactions. The DeltaCp, of denaturation was found for C-terminus and N-terminus of RfBP-riboflavin complex to amount to 2.5 and -1.9 kcal mol(-1), respectively. The calculated domain interaction free energy, DeltaGCN, was estimated to be approximately -1580 cal mol(-1) at 67.0 degrees C. This value indicates that the interdomain interaction is of medium strength.  相似文献   
29.
Steady-state fluorescence quenching and time-resolved measurements have been performed to resolve the fluorescence contributions of the two tryptophan residues, W43 and W75, in the subunit of the homodimer of the Tet repressor fromEscherichia coli. The W43 residue is localized within the helix-turn-helix structural domain, which is responsible for sequence-specific binding of the Tet repressor to thetet operator. The W75 residue is in the protein matrix near the tetracycline-binding site. The assignment of the two residues has been confirmed by use of single-tryptophan mutants carrying either W43 or W75. The FQRS (fluorescence-quenching-resolved-spectra) method has been used to decompose the total emission spectrum of the wild-type protein into spectral components. The resolved spectra have maxima of fluorescence at 349 and 324 nm for the W43 and W75 residues, respectively. The maxima of the resolved spectra are in excellent agreement with those found using single-tryptophan-containing mutants. The fluorescence decay properties of the wild type as well as of both mutants of Tet repressor have been characterized by carrying out a multitemperature study. The decays of the wild-type Tet repressor and W43-containing mutant can be described as being of double-exponential type. The W75 mutant decay can be described by a Gaussian continuous distribution centered at 5.0 nsec with a bandwidth equal to 1.34 nsec. The quenching experiments have shown the presence of two classes of W43 emission. One of the components, exposed to solvent, has a maximum of fluorescence emission at 355 nm, with the second one at about 334 nm. The red-emitting component can be characterized by bimolecular-quenching rate constant,k q equal to 2.6×109, 2.8×109, and 2.0×109 M–1 sec–1 for acrylamide, iodide, and succinimide, respectively. The bluer component is unquenchable by any of the quenchers used. The W75 residue of the Tet repressor has quenching rate constant equal to 0.85×109 and 0.28 × 109 M–1 sec–1 for acrylamide and succinimide, respectively. These values indicate that the W75 is not deeply buried within the protein matrix. Our results indicate that the Tet repressor can exist in its ground state in two distinct conformational states which differ in the microenvironment of the W43 residue.Abbreviations FQRS fluorescence-quenching-resolved spectra - HTH helix-turn-helix motif - TetR tetracycline repressor fromE. coli - WT wild-type TetR - W43 single point mutant with phenyloalanine substituted for tryptophan at position 75 in both subunits - W75 single point mutant with phenyloalanine substituted for tryptophan at position 43 in both subunits  相似文献   
30.
Previous studies [Wasylewskiet al. (1996),J. Protein Chem. 15, 45–58] have shown that the W43 residue localized within the helix-turn-helix structure domain of Tet repressor can exist in the ground state in two conformational states. In this paper we investigate the fluorescence properties of W43 of TetR upon binding of tetracycline inducer and its chemical analogs such as anhydro- and epitetracycline. Binding of the drug inducer to the protein indicates that the W43 residue still exists in two conformational states; however, its environment changes drastically, as can be judged by the changes in fluorescence parameters. The FQRS (fluorescence-quenching-resolved spectra) method was used to decompose the total emission spectrum. The resolved spectra exhibit maxima of fluorescence at 346 and 332 nm and the component quenchable by KI (346 nm) is shifted 9 nm toward the blue side of the spectrum upon inducer binding. The observed shift does not result from the changes in the exposure of W43, since the bimolecular quenching rate constant remains the same and is equal to about 2.7×109M–1sec–1. The binding of tetracycline leads to drastic decrease of the W43 fluorescence intensity and increase of the tetracycline intensity as well as the decrease of fluorescence lifetime, especially of the W43 component characterized by the emission at 332 nm. The observed energy transfer from W43 to tetracycline is more efficient for the state characterized by the fluorescence emission at 332 nm (88%) than for the component quenchable by iodide (53%) Tetracycline and several of its derivatives were also used to observe how chemical modifications of the hydrophilic groups in tetracycline influence the mechanism of binding of the antibiotic to Tet repressor. By use of pulsed-laser photoacoustic spectroscopy it is shown that the binding of tetracyclines to Tet repressor leads to significant increase of tetracycline fluorescence quantum yields. Steady-state fluorescence quenching of tetracycline analogs in complexes with Tet repressor using potassium iodide as a quencher allowed us to determine the dependence of the exposure of bound antibiotic on the modifications of hydrophilic substituents of tetracycline. Circular dichroism studies of the TetR-[Mg · tc]+ complex do not indicate dramatic changes in the secondary structure of the protein; however, the observed small decrease in the TetR helicity may occur due to partial unfolding of the DNA recognition helix of the protein. The observed changes may play an important role in the process of induction in which tetracycline binding results in the loss of specific DNA binding.Abbreviations FQRS fluorescence-quenching-resolved spectra - HTH helix-turn-helix motif - tc tetracycline - TetR tetracycline repressor from Escherichia coli - TetR WT wild-type TetR - TetR W43 single point mutant with phenylalanine substituted for tryptophan at position 75 in both subunits  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号