首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   494篇
  免费   27篇
  2021年   3篇
  2020年   3篇
  2019年   7篇
  2018年   7篇
  2017年   7篇
  2016年   6篇
  2015年   7篇
  2014年   7篇
  2013年   26篇
  2012年   21篇
  2011年   25篇
  2010年   13篇
  2009年   21篇
  2008年   28篇
  2007年   23篇
  2006年   27篇
  2005年   36篇
  2004年   36篇
  2003年   32篇
  2002年   26篇
  2001年   5篇
  2000年   8篇
  1999年   7篇
  1998年   9篇
  1996年   11篇
  1995年   7篇
  1994年   5篇
  1992年   5篇
  1991年   3篇
  1990年   6篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1985年   10篇
  1984年   3篇
  1983年   4篇
  1982年   7篇
  1980年   4篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1975年   4篇
  1974年   5篇
  1972年   4篇
  1970年   4篇
  1968年   3篇
  1967年   3篇
  1966年   7篇
  1962年   2篇
  1961年   2篇
排序方式: 共有521条查询结果,搜索用时 31 毫秒
61.
N-(m-Nitrophenyl)-beta-D-glucopyranosylamine (Gln), N-(N-methylphenyl)-beta-D-glucopyranosylamine (Glm), N-beta-D-glucopyranosylpyrazole (Glp), and N-beta-D-glucopyranosylimidazole (Gli) have been synthesized. Their basicity constants, pKb, determined in methanol were, respectively, 14.99, 14.36, 15.04, and 9.74. The derivatives of secondary amines (Glm, Glp, and Gli) did not mutarotate in methanol in the presence of 3,5-dinitrobenzoic acid and hydrochloric acid. The heats of formation and entropies were calculated by the AM1 and PM3 methods for the glucosylamines and their cations under consideration of two plausible protonation centers. Thermodynamic parameters for the proton transfer in the reaction: glucosylamine + CH3OH2+ = glucosylamineH+ + CH3OH were determined and the protonation center in the glucosylamine molecule was identified. The mechanism of mutarotation of the glucosylamines is discussed and the conclusion made that formation of an acyclic immonium cation is not a satisfactory condition for the reaction to proceed.  相似文献   
62.
Fluorescein-labeled antibodies are widely used in clinical assays and fluorescence microscopy. The fluorescent signal per labeled antibody is limited by fluorescein self-quenching, which occurs when the antibody is heavily labeled with multiple fluoresceins. We examined immunoglobulin G (IgG) when labeled with 0.7 to about 30 fluoresceins per antibody molecule. The extent of self-quenching was decreased, and the signal increased, when the labeled antibody was in close proximity to metallic silver particles. Time-resolved measurements showed that the intensity increase was due in part to a silver-induced increase in the radiative decay rate. These results suggest the use of labeled antibodies conjugated to silver particles as ultrabright probes for imaging or analytical applications.  相似文献   
63.
Expression of caveolin-1 enhances cholesterol efflux in hepatic cells   总被引:7,自引:0,他引:7  
HepG2 cells were stably transfected with human caveolin-1 (HepG2/cav cells). Transfection resulted in expression of caveolin-1 mRNA, a high abundance of caveolin-1 protein, and the formation of caveolae on the plasma membrane. Cholesterol efflux from HepG2/cav cells was 280 and 45% higher than that from parent HepG2 cells when human plasma and human apoA-I, respectively, were used as acceptors. The difference in efflux was eliminated by treatment of cells with progesterone. There was no difference in cholesterol efflux to cyclodextrin. Cholesterol efflux from plasma membrane vesicles was similar for the two cell types. Transfection led to a 40% increase in the amount of plasma membrane cholesterol in cholesterol-rich domains (caveolae and/or rafts) and a 67% increase in the rate of cholesterol trafficking from intracellular compartments to these domains. Cholesterol biosynthesis in HepG2/cav cells was increased by 2-fold, and cholesterol esterification was reduced by 50% compared with parent HepG2 cells. The proliferation rate of transfected cells was significantly lower than that of non-transfected cells. Transfection did not affect expression of ABCA1 or the abundance of ABCA1 protein, but decreased secretion of apoA-I. We conclude that overexpression of caveolin-1 in hepatic cells stimulates cholesterol efflux by enhancing transfer of cholesterol to cholesterol-rich domains in the plasma membrane.  相似文献   
64.
Contribution of the protein kinase A (PKA) and protein kinase C (PKC) signalling pathways to the regulation of 11beta-hydroxysteroid dehydrogenase type II (HSD11B2) gene expression was investigated in human breast cancer cell line MCF-7. Treatment of the cells with an adenylyl cyclase activator, forskolin, known to stimulate the PKA pathway, resulted in an increase in HSD11B2 mRNA content. Semi-quantitative RT-PCR revealed attenuation of the effect of forskolin by phorbol ester, tetradecanoyl phorbol acetate (TPA), an activator of the PKC pathway. It was also demonstrated that specific inhibitors significantly reduced the effect of activators of the two pathways. Stimulation of the PKA pathway did not affect, whereas stimulation of the PKC pathway significantly reduced MCF-7 cell proliferation in a time-dependent manner. A cell growth inhibitor, dexamethasone, at high concentrations, caused a 40% decrease in proliferation of MCF-7 cells and this effect was abolished under conditions of increased HSD11B2 expression. It was concluded that in MCF-7 cells, stimulation of the PKA signal transduction pathway results in the induction of HSD11B2 expression and that this effect is markedly reduced by activation of the PKC pathway. Activation of the PKC pathway also resulted in inhibition of cell proliferation, while activation of the PKA pathway abolished the antiproliferative effect of dexamethasone. These effects might be due to oxidation of dexamethasone by the PKA-inducible HSD11B2.  相似文献   
65.
The crystal structure of the second PDZ domain of the scaffolding protein syntenin was solved using data extending to 0.73 A resolution. The crystallographic model, including the hydrogen atoms and the anisotropic displacement parameters, was refined to a conventional R-factor of 7.5% and Rfree of 8.7%, making it the most precise crystallographic model of a protein molecule to date. The model reveals discrete disorder in several places in the molecule, and significant plasticity of the peptide bond, with some omega angles deviating by nearly 20 degrees from planarity. Most hydrogen atoms are easily identifiable in the electron density and weak hydrogen bonds of the C-H...O type are clearly visible between the beta-strands. The study sets a new standard for high-resolution protein crystallography.  相似文献   
66.
The crystal structure of the Bacillus subtilis YkoF gene product, a protein involved in the hydroxymethyl pyrimidine (HMP) salvage pathway, was solved by the multiwavelength anomalous dispersion (MAD) method and refined with data extending to 1.65 A resolution. The atomic model of the protein shows a homodimeric association of two polypeptide chains, each containing an internal repeat of a ferredoxin-like betaalphabetabetaalphabeta fold, as seen in the ACT and RAM-domains. Each repeat shows a remarkable similarity to two members of the COG0011 domain family, the MTH1187 and YBL001c proteins, the crystal structures of which were recently solved by the Northeast Structural Genomics Consortium. Two YkoF monomers form a tightly associated dimer, in which the amino acid residues forming the interface are conserved among family members. A putative small-ligand binding site was located within each repeat in a position analogous to the serine-binding site of the ACT-domain of the Escherichia coli phosphoglycerate dehydrogenase. Genetic data suggested that this could be a thiamin or HMP-binding site. Calorimetric data confirmed that YkoF binds two thiamin molecules with varying affinities and a thiamine-YkoF complex was obtained by co-crystallization. The atomic model of the complex was refined using data to 2.3 A resolution and revealed a unique H-bonding pattern that constitutes the molecular basis of specificity for the HMP moiety of thiamin.  相似文献   
67.
Traumatic brain injury is a well-recognized environmental risk factor for developing Alzheimer's disease. Repetitive concussive brain injury (RCBI) exacerbates brain lipid peroxidation, accelerates amyloid (Abeta) formation and deposition, as well as cognitive impairments in Tg2576 mice. This study evaluated the effects of vitamin E on these four parameters in Tg2576 mice following RCBI. Eleven-month-old mice were randomized to receive either regular chow or chow-supplemented with vitamin E for 4 weeks, and subjected to RCBI (two injuries, 24 h apart) using a modified controlled cortical impact model of closed head injury. The same dietary regimens were maintained up to 8 weeks post-injury, when the animals were killed for biochemical and immunohistochemical analyses after behavioral evaluation. Vitamin E-treated animals showed a significant increase in brain vitamin E levels and a significant decrease in brain lipid peroxidation levels. After RBCI, compared with the group on regular chow, animals receiving vitamin E did not show the increase in Abeta peptides, and had a significant attenuation of learning deficits. This study suggests that the exacerbation of brain oxidative stress following RCBI plays a mechanistic role in accelerating Alphabeta accumulation and behavioral impairments in the Tg2576 mice.  相似文献   
68.
The effect of the pressure on the structure and stability of the D-Galactose/D-Glucose binding protein (GGBP) from Escherichia coli was studied by steady-state and time-resolved fluorescence spectroscopy, and the ability of glucose ligand to stabilize the GGBP structure was also investigated. Steady-state fluorescence experiments showed a marked quenching of fluorescence emission of GGBP in the absence of glucose. Instead, the presence of glucose seems to stabilize the structure of GGBP at low and moderate pressure values. Time-resolved fluorescence measurements showed that the GGBP taumean in the absence of glucose varies significantly up to 600 bar, while in the presence of the ligand it is almost unaffected by pressure increase up to 600 bar. The effect of the pressure on GGBP was also studied by molecular dynamics simulations. The simulation data support the spectroscopic results and confirm that the presence of glucose is able to contrast the negative effects of pressure on the protein structure. Taken together, the spectroscopic and computer simulation studies suggest that at pressure values up to 2000 bar the structure of GGBP in the absence of glucose remains folded, but a significant perturbation of the protein secondary structures can be detected. The binding of glucose reduces the negative effect of pressure on protein structure and confers protection from perturbation especially at moderate pressure values.  相似文献   
69.
Glucocorticoid (GC) metabolism by the 11beta-hydroxysteroid dehydrogenase (HSD) system is an important prereceptor regulator of GC action. The HSD enzymes catalyze the interconversion of the endogenous, biologically active GC cortisol and its inactive 11-dehydro metabolite cortisone. The role of the HSD enzymes in the metabolism of synthetic GCs, such as dexamethasone (Dex), is more complex. The human lung is a classic GC-sensitive organ; however, the roles of the HSD enzymes (HSD1 and HSD2) in the human lung are poorly understood. In the present study, we examined the expression of the HSD enzymes in human adult and fetal lung tissues and the human lung epithelial cell line NCI-H441. We observed that human adult and fetal lung tissues, as well as H441 cells, express HSD2 protein and that it is upregulated by Dex (10(-7) M). By contrast, HSD1 protein was undetectable. We also show that the Dex-mediated regulation of surfactant protein A is attenuated by inhibition of HSD2 activity. Furthermore, we demonstrate that unlike the inactive, 11-dehydro metabolite of cortisol (i.e., cortisone), the 11-dehydro metabolite of Dex, 11-dehydro-Dex, competes for binding to the GC receptor (GR) in human lung epithelial cells and retains GR agonist activity. Together, these data suggest that differences exist in the biological activities of the metabolites of cortisol and Dex.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号