首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   5篇
  179篇
  2018年   4篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   3篇
  2012年   7篇
  2011年   10篇
  2010年   5篇
  2009年   7篇
  2008年   16篇
  2007年   19篇
  2006年   12篇
  2005年   10篇
  2004年   14篇
  2003年   8篇
  2002年   13篇
  2001年   6篇
  2000年   8篇
  1999年   3篇
  1996年   1篇
  1994年   2篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1971年   1篇
排序方式: 共有179条查询结果,搜索用时 15 毫秒
121.
While the Fe(2+)-dithiocarbamate complexes have been commonly used as NO traps to estimate NO production in biological systems, these complexes can undergo complex redox chemistry. Characterization of this redox chemistry is of critical importance for the use of this method as a quantitative assay of NO generation. We observe that the commonly used Fe(2+) complexes of N-methyl-D-glucamine dithiocarbamate (MGD) or diethyldithiocarbamate (DETC) are rapidly oxidized under aerobic conditions to form Fe(3+) complexes. Following exposure to NO, diamagnetic NO-Fe(3+) complexes are formed as demonstrated by the optical, electron paramagnetic resonance and gamma-resonance spectroscopy, chemiluminescence and electrochemical methods. Under anaerobic conditions the aqueous NO-Fe(3+)-MGD and lipid soluble NO-Fe(2+)-DETC complexes gradually self transform by reductive nitrosylation into paramagnetic NO-Fe(2+)-MGD complexes with yield of up to 50% and the balance is converted to Fe(3+)-MGD and nitrite. In dimethylsulfoxide this process is greatly accelerated. More efficient transformation of NO-Fe(3+)-MGD into NO-Fe(2+)-MGD (60-90% levels) was observed after addition of reducing equivalents such as ascorbate, hydroquinone or cysteine or with addition of excess Fe(2+)-MGD. With isotope labeling of the NO-Fe(3+)-MGD with (57)Fe, it was shown that these complexes donate NO to Fe(2+)-MGD. NO-Fe(3+)-MGD complexes were also formed by reversible oxidation of NO-Fe(2+)-MGD in air. The stability of NO-Fe(3+)-MGD and NO-Fe(2+)-MGD complexes increased with increasing the ratio of MGD to Fe. Thus, the iron-dithiocarbamate complexes and their NO derivatives exhibit complex redox chemistry that should be considered in their application for detection of NO in biological systems.  相似文献   
122.
Whereas altered nitric oxide (NO.) formation from endothelial nitric oxide synthase (NOS) causes impaired vascular reactivity in a number of cardiovascular diseases, questions remain regarding how endothelial injury results in impaired NO. formation. It is unknown if loss of NOS expression or activity is required or if other factors are involved. Detergent treatment has been used to induce endothelial dysfunction. Therefore, NOS and NO. synthesis were characterized in a rat heart model of endothelial injury and dysfunction induced by the detergent Triton X-100. Cardiac NO. formation was directly measured by electron paramagnetic resonance spectroscopy. NOS activity was determined by the L-[(14)C]arginine conversion assay. Western blots and immunohistology were applied to define the amounts of NOS present in heart tissue before and after Triton treatment. Immunoelectron microscopy was performed to assess intracellular NOS distribution. A short bolus of Triton X-100, 0.25%, abolished responses to histamine and calcium ionophore while preserving response to nitroprusside. Complete blockade of NO. generation occurred after Triton treatment, but NOS activity assayed with addition of exogenous substrate and cofactors was unchanged, and identical 135-kDa NOS bands were seen on Western blots, indicating that NOS was not removed from the heart or structurally damaged by Triton. Immunohistochemistry showed no change in NOS localization after Triton treatment, and immunoelectron microscopy revealed similar NOS distribution in the plasma membrane and intracellular membranes. These results demonstrate that the endothelial dysfunction was due to decreased NO. synthesis but was not caused by loss or denaturation of NOS. Thus endothelial dysfunction due to mild endothelial membrane injury may occur in the presence of active NOS and is triggered by loss of NOS substrates or cofactors.  相似文献   
123.
Alveolar macrophages are important host defense cells in the human lung that continuously phagocytose environmental and infectious particles that invade the alveolar space. Alveolar macrophages are prototypical alternatively activated macrophages, with up-regulated innate immune receptor expression, down-regulated costimulatory molecule expression, and limited production of reactive oxygen intermediates (ROI) in response to stimuli. Surfactant protein A (SP-A) is an abundant protein in pulmonary surfactant that has been shown to alter several macrophage (Mphi) immune functions. Data regarding SP-A effects on ROI production are contradictory, and lacking with regard to human Mphi. In this study, we examined the effects of SP-A on the oxidative response of human Mphi to particulate and soluble stimuli using fluorescent and biochemical assays, as well as electron paramagnetic resonance spectroscopy. SP-A significantly reduced Mphi superoxide production in response to the phorbol ester PMA and to serum-opsonized zymosan (OpZy), independent of any effect by SP-A on zymosan phagocytosis. SP-A was not found to scavenge superoxide. We measured Mphi oxygen consumption in response to stimuli using a new oxygen-sensitive electron paramagnetic resonance probe to determine the effects of SP-A on NADPH oxidase activity. SP-A significantly decreased Mphi oxygen consumption in response to PMA and OpZy. Additionally, SP-A reduced the association of NADPH oxidase component p47(phox) with OpZy phagosomes as determined by confocal microscopy, suggesting that SP-A inhibits NADPH oxidase activity by altering oxidase assembly on phagosomal membranes. These data support an anti-inflammatory role for SP-A in pulmonary homeostasis by inhibiting Mphi production of ROI through a reduction in NADPH oxidase activity.  相似文献   
124.
Mice have been increasingly used as models for investigating cardiovascular diseases. However, the responsiveness of mouse vasculature to endothelin (ET)-1 has not been clearly established. The goal of this study was to determine the role of ET receptors (ET(A) and ET(B)) in mouse vessels using isometric force measurements. Results showed that in the abdominal aorta ET-1 induced a concentration-dependent contraction (EC(50): 1.4 nM) with maximum reaching 89.5 +/- 4.9% (10 nM) of that induced by 60 mM K(+) [with nitric oxide synthase (NOS) inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME)]. However, in the thoracic aorta or the carotid artery, ET-1 was poorly effective. RT-PCR revealed that in the endothelium-denuded abdominal aorta, the PCR product for ET(B) receptors was very low compared with ET(A). Similarly in tissues treated with l-NAME, the ET(B) receptor-specific agonist sarafotoxin 6c (S6c; 100 nM) induced only a minimal contraction (<5%). Meanwhile, the ET(A) antagonist BQ-123 (1 microM) completely inhibited the maximum ET-1 (10 nM) contractile response. Furthermore, we found that in the abdominal aorta that had not been treated with l-NAME, ET-1-induced contraction significantly decreased. However, in such specimens, S6c was unable to induce any relaxation on phenylephrine-induced contraction. These results indicate that the role of ET receptors differs considerably among mouse vessels. In the abdominal aorta, ET(A) receptor mediates a potent vasoconstrictor response, whereas ET(B) has, if any, only a minimal functional presence. Also, our data suggest that ET-1 might involve a NOS-dependent vasodilation in the abdominal aorta, which remains to be further defined.  相似文献   
125.
Superoxide radicals can be measured by redox methods which utilize the oxidation/reduction reactions of specific compounds. The redox methods, however, suffer from various interferences, which limit their use in the assay of superoxide. Electron paramagnetic resonance (EPR) spectroscopy using spin traps has been widely used as an alternative and direct technique to measure superoxide radicals. In our recent study, we have demonstrated the detection of superoxide in cellular system by EPR spectroscopy with triarylmethyl (trityl) free radical, TAM Ox063. TAM is highly water-soluble and stable in the presence of many biological oxidizing and reducing agents such as hydrogen peroxide, ascorbate, and glutathione. TAM reacts with superoxide with an apparent second order rate constant of 3.1x10(3)M(-1)s(-1). In the present work, we investigated the feasibility of a spectrophotometric assay of superoxide by taking advantage of the newly formed distinct absorption peak corresponding to the product formed from the reaction between TAM and superoxide. The effects of different fluxes of superoxide and concentrations of TAM on the efficiency and sensitivity of quantification of superoxide were investigated and compared with the widely used cytochrome c method of superoxide determination. The results demonstrated that the TAM method is comparable to the cytochrome c method for the assay of superoxide and further revealed that the assay is not affected by the presence of hydrogen peroxide. In summary, the TAM spectrophotometric assay of superoxide provides a suitable alternative method to the cytochrome c assay to measure superoxide and further complements our earlier reported TAM-EPR assay of superoxide.  相似文献   
126.
Li H  Samouilov A  Liu X  Zweier JL 《Biochemistry》2003,42(4):1150-1159
In addition to nitric oxide (NO) generation from specific NO synthases, NO is also formed during anoxia from nitrite reduction, and xanthine oxidase (XO) catalyzes this process. While in tissues and blood high nitrate levels are present, questions remain regarding whether nitrate is also a source of NO and if XO-mediated nitrate reduction can be an important source of NO in biological systems. To characterize the kinetics, magnitude, and mechanism of XO-mediated nitrate reduction under anaerobic conditions, EPR, chemiluminescence NO-analyzer, and NO-electrode studies were performed. Typical XO reducing substrates, xanthine, NADH, and 2,3-dihydroxybenz-aldehyde, triggered nitrate reduction to nitrite and NO. The rate of nitrite production followed Michaelis-Menten kinetics, while NO generation rates increased linearly following the accumulation of nitrite, suggesting stepwise-reduction of nitrate to nitrite then to NO. The molybdenum-binding XO inhibitor, oxypurinol, inhibited both nitrite and NO production, indicating that nitrate reduction occurs at the molybdenum site. At higher xanthine concentrations, partial inhibition was seen, suggesting formation of a substrate-bound reduced enzyme complex with xanthine blocking the molybdenum site. The pH dependence of nitrite and NO formation indicate that XO-mediated nitrate reduction occurs via an acid-catalyzed mechanism. With conditions occurring during ischemia, myocardial xanthine oxidoreductase and nitrate levels were determined to generate up to 20 microM nitrite within 10-20 min that can be further reduced to NO with rates comparable to those of maximally activated NOS. Thus, XOR catalyzed nitrate reduction to nitrite and NO occurs and can be an important source of NO production in ischemic tissues.  相似文献   
127.
The endogenous methylarginines asymmetric dimethylarginine (ADMA) and N(G)-monomethyl-L-arginine (L-NMMA) regulate nitric oxide (NO) production from neuronal NO synthase (nNOS). Under conditions of L-arginine or tetrahydrobiopterin (BH(4)) depletion, nNOS also generates superoxide, O(2)(.); however, the effects of methylarginines on this O(2)(.) generation are poorly understood. Therefore, we measured the dose-dependent effects of ADMA and L-NMMA on the rate and amount of O(2)(.) production from nNOS under conditions of L-arginine and/or BH(4) depletion, using electron paramagnetic resonance spin trapping. In the absence of L-arginine, ADMA (1 microm) inhibited O(2)(.) generation by approximately 60% from a rate of 56 to 23 nmol/mg/min, whereas L-NMMA (0.1-100 microm) had no effect. L-Arginine markedly decreased the observed O(2)(.) adduct formation; however, O(2)(.) generation from the enzyme still occurs at a low rate (12.1 nmol/mg/min). This O(2)(.) leak is NOS-derived as it is not seen in the absence of calcium and calmodulin and demonstrates that O(2)(.) generation from NOS occurs even when normal substrate/ cofactor levels are present. Under conditions of BH(4) depletion, ADMA had no effect on O(2)(.), whereas L-NMMA increased O(2)(.) production almost 3-fold. This O(2)(.) generation was >90% inhibited by imidazole, indicating that it occurred at the heme center. Thus, methylarginines can profoundly shift the balance of NO and O(2)(.) generation from nNOS. These observations have important implications with regard to the therapeutic use of methylarginine-NOS inhibitors in the treatment of disease.  相似文献   
128.
This present study examined the effects of high concentrations of nitric oxide (NO*) and peroxynitrite (ONOO-) on superoxide (O2*-) production from formyl-methionyl-leucyl-phenylalanine (fMLP)-stimulated polymorphonuclear leukocytes (PMNs) by using electron spin resonance (ESR) and spin trapping with 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO). We demonstrated that ONOO- (100 microM) decreased the ESR signal of DEPMPO-OOH from fMLP-activated PMNs, indicating the inhibition of O2*- generation, while it enhanced the signal of DEPMPO-OH. Inhibition of the respiratory burst was also observed when PMNs were pre-exposed to high concentrations of NO* (100 microM), generated by the NO* donor NOR-1, 30 min prior to stimulation with fMLP. NOR-1 inhibited O2*- generation more effectively under conditions in which ONOO-was formed concurrently. The ability of high concentrations of either ONOO- or NO* to inhibit O2*-generation from fMLP-stimulated PMNs is relevant to pathophysiological conditions, such as severe inflammation, in which NO* or ONOO- production can be significantly elevated.  相似文献   
129.
Several limitations have recently been described for lucigenin, a probe frequently used to assess the activity of vascular NAD(P)H oxidase, a major superoxide source. The preferential reducing substrate of such oxidase remains unclear. We assessed whether lucigenin artifacts could affect detection of NAD(P)H oxidase activity. Initial chemiluminescence assays were performed with vascular rings or homogenates at 5, 50, or 250 microM concentrations. Results showed preferential signals with NADPH (vs. NADH) with 5 and 50 microM lucigenin, which were blocked by diphenylene iodonium (DPI), superoxide dismutase (SOD), or its cell-permeable mimetic MnTBAP. With 250 microM lucigenin, the relative signal with NADH became larger than with NADPH, and was poorly inhibited by all three antagonists above. All SOD/DPI-resistant signals were effectively blocked by the electron acceptor nitrobluetetrazolium. Spin trapping with DMPO showed an approximate doubling of DMPO-OH radical adduct signal upon addition of 5 microM lucigenin to homogenates incubated with either NADPH or NADH. With 50 or 250 microM lucigenin, much larger increases were observed with NADH, as opposed to NADPH. Furthermore, oxygen consumption measurements showed analogous results. In summary, our data suggest that: (i) Lucigenin redox-cycling is detectable in vascular tissue even at 5 microM concentrations, while at 250 microM redox-cycling becomes predominant and is markedly increased when NADH is the assayed substrate; and (ii) With 250 microM lucigenin, preferentially with NADH, signals are further overestimated by direct, oxidase-dependent, superoxide-independent two-electron transfer. Therefore, previous reports of preferential NADH affinity of the vascular oxidase may have been due to these artifacts.  相似文献   
130.
Prior spin trapping studies reported that H(2)O(2) is metabolized by copper,zinc-superoxide dismutase (SOD) to form (.)OH that is released from the enzyme, serving as a source of oxidative injury. Although this mechanism has been invoked in a number of diseases, controversy remains regarding whether the hydroxylation of spin traps by SOD is truly derived from free (.)OH or (.)OH scavenged off the Cu(2+) catalytic site. To distinguish whether (.)OH is released from the enzyme, a comprehensive EPR investigation of radical production and the kinetics of spin trapping was performed in the presence of a series of structurally different (.)OH scavengers including ethanol, formate, and azide. Although each of these have similar potency in scavenging (.)OH as the spin trap 5, 5-dimethyl-1-pyrroline-N-oxide and form secondary radical adducts, each exhibited very different potency in scavenging (.)OH from SOD. Ethanol was 1400-fold less potent than would be expected for reaction with free (.)OH. The anionic scavenger formate, which readily accesses the active site, was still 10-fold less effective than would be predicted for free (.)OH, whereas azide was almost 2-fold more potent than would be predicted. Analysis of initial rates of adduct formation indicated that these reactions did not involve free (.)OH. EPR studies of the copper center demonstrated that while high H(2)O(2) concentrations induce release of Cu(2+), the magnitude of spin adducts produced by free Cu(2+) was negligible compared with that from intact SOD. Further studies with a series of peroxidase substrates demonstrated that characteristic radicals formed by peroxidases were also efficiently generated by H(2)O(2) and SOD. Thus, SOD and H(2)O(2) oxidize and hydroxylate substrates and spin traps through a peroxidase reaction with bound (.)OH not release of (.)OH from the enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号