首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   2篇
  2023年   1篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   5篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1985年   2篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   2篇
排序方式: 共有52条查询结果,搜索用时 31 毫秒
11.
During the years or decades of prion disease incubation, at-risk individuals are certain to encounter diverse pathological insults, such as viral and bacterial infections, autoimmune diseases, or inflammatory processes. Whether prion disease incubation time and clinical signs or otherwise the pathology of intercurrent diseases can be affected by the coinfection process is unknown. To investigate this possibility, mice infected with the scrapie agent at both high and low titers were subsequently induced for experimental autoimmune encephalomyelitis, an immune system-mediated model of central nervous system (CNS) inflammation. We show here that co-induced mice died from a progressive neurological disease long before control mice succumbed to classical scrapie. To investigate the mechanism of the co-induced syndrome, we evaluated biochemical and pathological markers of both diseases. Brain and spleen PrP(Sc) levels in the dying co-induced mice were comparable to those observed in asymptomatic scrapie-infected animals, suggesting that co-induced disease is not an accelerated form of scrapie. In contrast, inflammatory markers, such as demyelination, immune cell infiltrates, and gliosis, were markedly increased in co-induced mouse spinal cords. Activated astrocytes were especially elevated in the medulla oblongata. Furthermore, PrP(sc) depositions were found in demyelinated white matter areas in co-induced mouse spinal cords, suggesting the presence of activated infected immune cells that infiltrate into the CNS to facilitate the process of prion neuroinvasion. We hypothesize that inflammatory processes affecting the CNS may have severe clinical implications in subjects incubating prion diseases.  相似文献   
12.

Background

T-cell vaccination (TCV) for multiple sclerosis (MS) refers to treatment with autologous anti-myelin T-cells, attenuated by irradiation. Previously published clinical trials have been all open-labeled.

Aim

To evaluate the safety and efficacy of TCV in progressive MS, in a double-blind, controlled clinical trial.

Methodology

Twenty-six patients with relapsing-progressive MS were enrolled in the study (mean age: 39±9.8 years; mean EDSS: 4.4±1.7). T-cell lines reactive to 9 different peptides of the myelin antigens, MBP, MOG and PLP were raised from the patients'' peripheral blood. The patients were randomized into two groups: 19 were treated with TCV (four subcutaneous injections of 10–30×106 T-cells, attenuated by irradiation, on days 1, 30, 90 and 180) and 7 patients were treated with sham injections. Twenty-four patients (17 in the TCV group and 7 in the placebo) were eligible for per-protocol analysis.

Results

At one year following the inclusion, an increase in the EDSS (+0.50) and an increase in 10-meter walking time (+0.18 sec), were observed in the placebo group; in the TCV group there was a decrease in the EDSS (−0.44; p<0.01) and in the 10-meter walking time (0.84 sec; p<0.005). Sixteen of the 17 patients (94.1%) in the TCV group remained relapse-free during the year of the study, as compared to 42.9% in the placebo group (p = 0.01 and p = 0.03 with adjustment). The proportion of patients with any relapse during the year of the study in the TCV-group, was reduced by 89.6%., as compared to the placebo-treated group. MRI parameters did not change significantly.

Conclusions

This is the first controlled, double-blind trial with TCV in progressive MS. The results demonstrate the feasibility and safety of the procedure, and provide significant indications of clinical efficacy. Further studies with larger groups of subjects are warranted.

Trial Registration

ClinicalTrials.gov NCT01448252  相似文献   
13.
14.
Predation plays an important role in ecological communities by affecting prey behavior such as foraging and by physical removal of individual prey. In regard to foraging, animals such as desert rodents often balance conflicting demands for food and safety. This has been studied in the field by indirectly manipulating predatory risk through the alteration of cues associated with increased risk such as cover or illumination. It has also been studied by directly manipulating the presence of predators in aviaries. Here, we report on experiments in which we directly manipulated actual predatory risk to desert rodents in the field. We conducted a series of experiments in the field using a trained barn owl (Tyto alba) to investigate how two species of coexisting gerbils (Gerbillus allenbyi and G. pyramidum) respond to various cues of predatory risk in their natural environment. The gerbils responded to risk of predation, in the form of owl flights and owl hunger calls, by reducing their activity in the risky plot relative to the control plot. The strongest response was to owl flights and the weakest to recorded hunger calls of owls. Furthermore, when risk of predation was relatively high, as in the case with barn owl flights, both gerbil species mostly limited their activity to the safer bush microhabitat. The response of the gerbils to risk of predation disappeared very quickly following removal of the treatment, and the gerbils returned to normal levels of activity within the same night. The gerbils did not respond to experimental cues (alarm clock), the presence of the investigators, the presence of a quiet owl, and recorded white noise. Using trained barn owls, we were able to effectively manipulate actual risk of predation to gerbils in natural habitats and to quantify how gerbils alter their behavior in order to balance conflicting demands of food and safety. The method allows assessment of aspects of behavior, population interactions, and community characteristics involving predation in natural habitats.  相似文献   
15.
Two basic proteins, denoted P1 and P2 protein, were purified from human sciatic nerve. The isolation was achieved by the following steps: delipidation with chloroform/methanol mixtures, dry acetone and dry ether; acid extraction at pH 2; ion exchange chromatography on QAE-Sephadex A-25 and gel filtration on Sephadex G-100. P1, P2 proteins and the basic protein of the central nervous system have been shown to have different electrophoretic mobility, and each of the two peripheral basic proteins was shown to be homogeneous by disc electrophoresis. The molecular weight of P1 protein is around 14 100 and that of P2 protein is around 12 200, as determined by ultracentrifugal analysis. There was some difference in the amino acid composition of human P1 and P2 protein, and a marked difference between their composition and the composition of central basic protein and bovine peripheral P1 and P2 proteins which were described previously. When injected to animals, P1 protein induced only experimental allergic neuritis while P2 protein induced both mild experimental allergic neuritis and experimental allergic encephalomyelitis. Thus, the human P1 protein is similar to the bovine P1 protein and human P2 protein is similar to bovine P2 protein, concerning their electrophoretic mobilities, molecular weights and biological properties.  相似文献   
16.
Hawlena H  Abramsky Z  Krasnov BR 《Oecologia》2005,146(2):200-208
Parasites often confront conflicting demands when evaluating and distributing themselves among host individuals, in order to attain maximum reproductive success. We tested two alternative hypotheses about host preference by fleas in relation to the age of their rodent host. The first hypothesis suggests that fleas select adult over juvenile rodents because the latter represent a better nutritional resource (the “well-fed host” hypothesis), whereas the second hypothesis suggests that fleas prefer the weaker and less resistant juveniles because they are easier to colonise and exploit (“poorly fed host” hypothesis). We sampled fleas (Synosternus cleopatrae) on the gerbil (Gerbillus andersoni) in 23 different plots in the Negev desert and found an unequal distribution of fleas between adult and juvenile hosts. Furthermore, flea distribution changed as a function of flea density—from juvenile-biased flea parasitism (the “poorly fed host” hypothesis) at low densities to adult-biased flea parasitism (the “well-fed host” hypothesis) at high densities. Other factors that influenced flea preference were soil temperature and the presence of ticks. These results suggest that host selection is not an explicit alternative choice between adults and juveniles (“well-fed host” versus “poorly fed host” hypotheses), but rather a continuum where the distribution between adults and juveniles depends on host, parasite, and environmentally related factors.  相似文献   
17.
Grooming behaviour plays various roles in the health care, reproduction, and social life of an individual vertebrate. However, the reasons for the variability in time spent grooming amongst species, populations and individuals are not fully understood. We tested the hypothesis that the main role of grooming is ectoparasite removal and thus that time spent grooming by an animal reflects the costs of parasite infestation offset against the costs of grooming. The test was conducted on a rodent, Meriones crassus, that is parasitised by a flea, Xenopsylla conformis. We monitored behaviour of juvenile and adult rodents before and after flea infestation and quantified the probability of mortality of fleas with respect to the time spent grooming in adults compared with juvenile rodents. We predicted that: (1) increased costs of flea infestation (e.g. in parasitised as opposed to flea‐free rodents and in juveniles as opposed to adults) increases time spent grooming and (2) mortality probability per flea increases with increasing time spent grooming and is higher for fleas on juveniles than for fleas on adult rodents. We were interested to discover at the expense of which activity grooming is increased. Our findings established that the major role of grooming is in flea removal, as exposure to fleas evoked grooming activity in all rodents and grooming activity explained 57–70% of the variation in flea mortality. Furthermore, we showed that the rise in grooming activity was at the expense of resting. However, we found only partial support for the predicted increase in grooming time with increasing costs of flea infestation. Flea infestation did indeed increase the time spent grooming by rodents. Nevertheless, juvenile rodents who incur higher costs of flea infestation spent less time grooming than adults and sustained similar flea densities, suggesting that these hosts are constrained by some other factors, such as feeding time.  相似文献   
18.
19.
Host age is one of the key factors in host–parasite relationships as it possibly affects infestation levels, parasite-induced mortality of a host, and parasite distribution among host individuals. We tested two alternative hypotheses about infestation pattern and survival under parasitism in relation to host age. The first hypothesis assumes that parasites are recruited faster than they die and, thus, suggests that adult hosts will show higher infestation levels than juveniles because the former have more time to accumulate parasites. The second hypothesis assumes that parasites die faster than they are recruited and, thus, suggests that adults will show lower infestation levels because of acquired immune response and/or the mortality of heavily infested juveniles and, thus, selection for less infested adults. As the negative effects of parasites on host are often intensity-dependent, we expected that the age-related differences in infestation may be translated to lower or higher survival under parasitism of adults, in the cases of the first and the second hypotheses, respectively. We manipulated ectoparasite numbers using insecticide and assessed the infestation pattern in adult and juvenile gerbils (Gerbillus andersoni) in the Negev Desert. We found only a partial support for age-dependent parasitism. No age-related differences in infestation and distribution among host individuals were found after adjusting the ectoparasite numbers to the host’s surface area. However, age-related differences in survival under parasitism were revealed. The survival probability of parasitized juveniles decreased in about 48% compared to unparasitized hosts while the survival probability of adults was not affected by ectoparasites. Our results suggest that the effect of host age on host–parasite dynamics may not explicitly be determined by age-dependent differences in ectoparasite recruitment or mortality processes but may also be affected by other host-related and parasite-related traits.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号