首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   13篇
  2023年   2篇
  2022年   4篇
  2021年   7篇
  2020年   2篇
  2019年   4篇
  2018年   6篇
  2017年   3篇
  2016年   6篇
  2015年   10篇
  2014年   9篇
  2013年   7篇
  2012年   18篇
  2011年   18篇
  2010年   6篇
  2009年   7篇
  2008年   11篇
  2007年   11篇
  2006年   9篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  2002年   6篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1969年   1篇
排序方式: 共有170条查询结果,搜索用时 31 毫秒
91.
Reversible inhibitors (e.g., pyridostigmine bromide, neostigmine bromide) of carbamate origin are used in the early treatment of Myasthenia gravis (MG) to block acetylcholinesterase (AChE) native function and conserve efficient amount of acetylcholine for decreasing number of nicotinic receptors. Carbamate inhibitors are known for many undesirable side effects related to the reversible inhibition of AChE. In contrast, this paper describes 20 newly prepared bispyridinium inhibitors of potential concern for MG. Although some compounds from this series have been known before, they were not assayed for cholinesterase inhibition yet.The newly prepared compounds were evaluated in vitro on human erythrocyte AChE and human plasmatic butyrylcholinesterase (BChE). Their inhibitory ability was expressed as IC50 and compared to standard carbamate drugs. Three compounds presented promising inhibition (in μM range) of both enzymes in vitro similar to the used standards. The novel inhibitors did not present selectivity between AChE and BChE. Two newly prepared compounds were chosen for docking studies and confirmed apparent π–π or π–cationic interactions aside enzyme’s catalytic sites. The kinetics assay confirmed non-competitive inhibition of AChE by two best newly prepared compounds.  相似文献   
92.
The facultative intracellular bacterium Francisella tularensis is the causal agent of the serious infectious disease tularemia. Despite the dynamic progress, which has been made in last few years, important questions regarding Francisella pathogenicity still remain to be answered. Generally, secreted proteins play an important role in pathogenicity of intracellular microbes. In this study, we investigated the protein composition of the culture filtrate proteins of highly virulent F. tularensis subsp. tularensis, strain SCHU S4 and attenuated F. tularensis subsp. holarctica, live vaccine strain using a comparative proteomic analysis. The majority of proteins identified in this study have been implicated in virulence mechanisms of other pathogens, and several have been categorized as having moonlighting properties; those that have more than one unrelated function. This profiling study of secreted proteins resulted in the unique detection of acid phosphatase (precursor) A (AcpA), β-lactamase, and hypothetical protein FTT0484 in the highly virulent strain SCHU S4 secretome. The release of AcpA may be of importance for F. tularensis subsp. tularensis virulence due to the recently described AcpA role in the F. tularensis escape from phagosomes.  相似文献   
93.
Hypertension is a heritable and major contributor to the global burden of disease. The sum of rare and common genetic variants robustly identified so far explain only 1%–2% of the population variation in BP and hypertension. This suggests the existence of more undiscovered common variants. We conducted a genome-wide association study in 1,621 hypertensive cases and 1,699 controls and follow-up validation analyses in 19,845 cases and 16,541 controls using an extreme case-control design. We identified a locus on chromosome 16 in the 5′ region of Uromodulin (UMOD; rs13333226, combined P value of 3.6×10−11). The minor G allele is associated with a lower risk of hypertension (OR [95%CI]: 0.87 [0.84–0.91]), reduced urinary uromodulin excretion, better renal function; and each copy of the G allele is associated with a 7.7% reduction in risk of CVD events after adjusting for age, sex, BMI, and smoking status (H.R. = 0.923, 95% CI 0.860–0.991; p = 0.027). In a subset of 13,446 individuals with estimated glomerular filtration rate (eGFR) measurements, we show that rs13333226 is independently associated with hypertension (unadjusted for eGFR: 0.89 [0.83–0.96], p = 0.004; after eGFR adjustment: 0.89 [0.83–0.96], p = 0.003). In clinical functional studies, we also consistently show the minor G allele is associated with lower urinary uromodulin excretion. The exclusive expression of uromodulin in the thick portion of the ascending limb of Henle suggests a putative role of this variant in hypertension through an effect on sodium homeostasis. The newly discovered UMOD locus for hypertension has the potential to give new insights into the role of uromodulin in BP regulation and to identify novel drugable targets for reducing cardiovascular risk.  相似文献   
94.
FLIGHT (http://flight.icr.ac.uk/) is an online resource compiling data from high-throughput Drosophila in vivo and in vitro RNAi screens. FLIGHT includes details of RNAi reagents and their predicted off-target effects, alongside RNAi screen hits, scores and phenotypes, including images from high-content screens. The latest release of FLIGHT is designed to enable users to upload, analyze, integrate and share their own RNAi screens. Users can perform multiple normalizations, view quality control plots, detect and assign screen hits and compare hits from multiple screens using a variety of methods including hierarchical clustering. FLIGHT integrates RNAi screen data with microarray gene expression as well as genomic annotations and genetic/physical interaction datasets to provide a single interface for RNAi screen analysis and datamining in Drosophila.Key words: RNAi, database, integration, bioinformatics, phenotype  相似文献   
95.
The facultative intracellular pathogen Francisella tularensis is the causative agent of the serious infectious disease tularemia. Despite intensive research, the virulence factors and pathogenetic mechanisms remain largely unknown. To identify novel putative virulence factors, we carried out a comparative proteome analysis of fractions enriched for membrane-associated proteins isolated from the highly virulent subspecies tularensis strain SCHU S4 and three representatives of subspecies holarctica of different virulence including the live vaccine strain. We identified six proteins uniquely expressed and four proteins expressed at significantly higher levels by SCHU S4 compared to the ssp. holarctica strains. Four other protein spots represented mass and charge variants and seven spots were charge variants of proteins occurring in the ssp. holarctica strains. The genes encoding proteins of particular interest were examined by sequencing in order to confirm and explain the findings of the proteome analysis. Our studies suggest that the subspecies tularensis-specific proteins represent novel potential virulence factors.  相似文献   
96.
Heme-regulated eukaryotic initiation factor 2alpha (eIF2alpha) kinase (HRI) functions in response to the heme iron concentration. At the appropriate heme iron concentrations under normal conditions, HRI function is suppressed by binding of the heme iron. Conversely, upon heme iron shortage, HRI autophosphorylates and subsequently phosphorylates the substrate, eIF2alpha, leading to the termination of protein synthesis. The molecular mechanism of heme sensing by HRI, including identification of the specific binding site, remains to be established. In the present study we demonstrate that His-119/His-120 and Cys-409 are the axial ligands for the Fe(III)-protoporphyrin IX complex (hemin) in HRI, based on spectral data on site-directed mutant proteins. Cys-409 is part of the heme-regulatory Cys-Pro motif in the kinase domain. A P410A full-length mutant protein displayed loss of heme iron affinity. Surprisingly, inhibitory effects of the heme iron on catalysis and changes in the heme dissociation rate constants in full-length His-119/His-120 and Cys-409 mutant proteins were marginally different to wild type. In contrast, heme-induced inhibition of Cys-409 mutants of the isolated kinase domain and N-terminal-truncated proteins was substantially weaker than that of the full-length enzyme. A pulldown assay disclosed heme-dependent interactions between the N-terminal and kinase domains. Accordingly, we propose that heme regulation is induced by interactions between heme and the catalytic domain in conjunction with global tertiary structural changes at the N-terminal domain that accompany heme coordination and not merely by coordination of the heme iron with amino acids on the protein surface.  相似文献   
97.
The gene lmbB2 of the lincomycin biosynthetic gene cluster of Streptomyces lincolnensis ATCC 25466 was shown to code for an unusual tyrosine hydroxylating enzyme involved in the biosynthetic pathway of this clinically important antibiotic. LmbB2 was expressed in Escherichia coli, purified near to homogeneity and shown to convert tyrosine to 3,4-dihydroxyphenylalanine (DOPA). In contrast to the well-known tyrosine hydroxylases (EC 1.14.16.2) and tyrosinases (EC 1.14.18.1), LmbB2 was identified as a heme protein. Mass spectrometry and Soret band-excited Raman spectroscopy of LmbB2 showed that LmbB2 contains heme b as prosthetic group. The CO-reduced differential absorption spectra of LmbB2 showed that the coordination of Fe was different from that of cytochrome P450 enzymes. LmbB2 exhibits sequence similarity to Orf13 of the anthramycin biosynthetic gene cluster, which has recently been classified as a heme peroxidase. Tyrosine hydroxylating activity of LmbB2 yielding DOPA in the presence of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) was also observed. Reaction mechanism of this unique heme peroxidases family is discussed. Also, tyrosine hydroxylation was confirmed as the first step of the amino acid branch of the lincomycin biosynthesis.  相似文献   
98.
The treatment of organophosphorus (OP) poisoning consists of the administration of a parasympatholytic agent (e.g., atropine), an anticonvulsant (e.g., diazepam) and an acetylcholinesterase (AChE) reactivator (e.g., obidoxime). The AChE reactivator is the causal treatment of OP exposure, because it cleaves the OP moiety covalently bound to the AChE active site. In this paper, fourteen novel AChE reactivators are described. Their design originated from a former promising compound K027. These compounds were synthesized, evaluated in vitro on human AChE (hAChE) inhibited by tabun, paraoxon, methylparaoxon and DFP and then compared to commercial hAChE reactivators (pralidoxime, HI-6, trimedoxime, obidoxime, methoxime) or previously prepared compounds (K027, K203). Three of these novel compounds showed a promising ability to reactivate hAChE comparable or better than the used standards. Consequently, a molecular docking study was performed for three of these promising novel compounds. The docking results confirmed the apparent influence of π-π or cation-π interactions and hydrogen bonding for reactivator binding within the hAChE active site cleft. The SAR features concerning the non-oxime part of the reactivator molecule are also discussed.  相似文献   
99.
The biosynthetic gene cluster of porothramycin, a sequence-selective DNA alkylating compound, was identified in the genome of producing strain Streptomyces albus subsp. albus (ATCC 39897) and sequentially characterized. A 39.7 kb long DNA region contains 27 putative genes, 18 of them revealing high similarity with homologous genes from biosynthetic gene cluster of closely related pyrrolobenzodiazepine (PBD) compound anthramycin. However, considering the structures of both compounds, the number of differences in the gene composition of compared biosynthetic gene clusters was unexpectedly high, indicating participation of alternative enzymes in biosynthesis of both porothramycin precursors, anthranilate, and branched L-proline derivative. Based on the sequence analysis of putative NRPS modules Por20 and Por21, we suppose that in porothramycin biosynthesis, the methylation of anthranilate unit occurs prior to the condensation reaction, while modifications of branched proline derivative, oxidation, and dimethylation of the side chain occur on already condensed PBD core. Corresponding two specific methyltransferase encoding genes por26 and por25 were identified in the porothramycin gene cluster. Surprisingly, also methyltransferase gene por18 homologous to orf19 from anthramycin biosynthesis was detected in porothramycin gene cluster even though the appropriate biosynthetic step is missing, as suggested by ultra high-performance liquid chromatography-diode array detection-mass spectrometry (UHPLC-DAD-MS) analysis of the product in the S. albus culture broth.  相似文献   
100.

Objective

Using European descent Czech populations, we performed a study of SLC2A9 and SLC22A12 genes previously identified as being associated with serum uric acid concentrations and gout. This is the first study of the impact of non-synonymous allelic variants on the function of GLUT9 except for patients suffering from renal hypouricemia type 2.

Methods

The cohort consisted of 250 individuals (150 controls, 54 nonspecific hyperuricemics and 46 primary gout and/or hyperuricemia subjects). We analyzed 13 exons of SLC2A9 (GLUT9 variant 1 and GLUT9 variant 2) and 10 exons of SLC22A12 by PCR amplification and sequenced directly. Allelic variants were prepared and their urate uptake and subcellular localization were studied by Xenopus oocytes expression system. The functional studies were analyzed using the non-parametric Wilcoxon and Kruskall-Wallis tests; the association study used the Fisher exact test and linear regression approach.

Results

We identified a total of 52 sequence variants (12 unpublished). Eight non-synonymous allelic variants were found only in SLC2A9: rs6820230, rs2276961, rs144196049, rs112404957, rs73225891, rs16890979, rs3733591 and rs2280205. None of these variants showed any significant difference in the expression of GLUT9 and in urate transport. In the association study, eight variants showed a possible association with hyperuricemia. However, seven of these were in introns and the one exon located variant, rs7932775, did not show a statistically significant association with serum uric acid concentration.

Conclusion

Our results did not confirm any effect of SLC22A12 and SLC2A9 variants on serum uric acid concentration. Our complex approach using association analysis together with functional and immunohistochemical characterization of non-synonymous allelic variants did not show any influence on expression, subcellular localization and urate uptake of GLUT9.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号