首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   13篇
  2023年   2篇
  2022年   4篇
  2021年   7篇
  2020年   2篇
  2019年   4篇
  2018年   6篇
  2017年   3篇
  2016年   6篇
  2015年   10篇
  2014年   9篇
  2013年   7篇
  2012年   18篇
  2011年   18篇
  2010年   6篇
  2009年   7篇
  2008年   11篇
  2007年   11篇
  2006年   9篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  2002年   6篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1969年   1篇
排序方式: 共有170条查询结果,搜索用时 15 毫秒
11.
Porcine oocytes that have matured in in vitro conditions undergo the process of aging during prolonged cultivation, which is manifested by spontaneous parthenogenetic activation, lysis or fragmentation of aged oocytes. This study focused on the role of hydrogen sulfide (H2S) in the process of porcine oocyte aging. H2S is a gaseous signaling molecule and is produced endogenously by the enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (MPST). We demonstrated that H2S-producing enzymes are active in porcine oocytes and that a statistically significant decline in endogenous H2S production occurs during the first day of aging. Inhibition of these enzymes accelerates signs of aging in oocytes and significantly increases the ratio of fragmented oocytes. The presence of exogenous H2S from a donor (Na2S.9H2O) significantly suppressed the manifestations of aging, reversed the effects of inhibitors and resulted in the complete suppression of oocyte fragmentation. Cultivation of aging oocytes in the presence of H2S donor positively affected their subsequent embryonic development following parthenogenetic activation. Although no unambiguous effects of exogenous H2S on MPF and MAPK activities were detected and the intracellular mechanism underlying H2S activity remains unclear, our study clearly demonstrates the role of H2S in the regulation of porcine oocyte aging.  相似文献   
12.

Background  

Genomic copy number changes and regional alterations in epigenetic states have been linked to grade in breast cancer. However, the relative contribution of specific alterations to the pathology of different breast cancer subtypes remains unclear. The heterogeneity and interplay of genomic and epigenetic variations means that large datasets and statistical data mining methods are required to uncover recurrent patterns that are likely to be important in cancer progression.  相似文献   
13.
Heme-regulated eIF2alpha kinase (HRI) is an important enzyme that modulates protein synthesis during cellular emergency/stress conditions, such as heme deficiency in red cells. It is essential to identify the heme axial ligand(s) and/or binding sites to establish the heme regulation mechanism of HRI. Previous reports suggest that a His residue in the N-terminal region and a Cys residue in the C-terminal region trans to the His are axial ligands of the heme. Moreover, mutational analyses indicate that a residue located in the kinase insertion (KI) domain between Kinase I and Kinase II domains in the C-terminal region is an axial ligand. In the present study, we isolate the KI domain of mouse HRI and employ site-directed mutagenesis to identify the heme axial ligand. The optical absorption spectrum of the Fe(III) hemin-bound wild-type KI displays a broad Soret band at around 373nm, while that of the Fe(II) heme-bound protein contains a band at 422nm. Spectral titration studies conducted for both the Fe(III) hemin and Fe(II) heme complexes with KI support a 1:1 stoichiometry of heme iron to protein. Resonance Raman spectra of Fe(III) hemin-bound KI suggest that thiol is the axial ligand in a 5-coordinate high-spin heme complex as a major form. Electron spin resonance (ESR) spectra of Fe(III) hemin-bound KI indicate that the axial ligands are OH(-) and Cys. Since Cys385 is the only cysteine in KI, the residue was mutated to Ser, and its spectral characteristics were analyzed. The Soret band position, heme spectral titration behavior and ESR parameters of the Cys385Ser mutant were markedly different from those of wild-type KI. Based on these spectroscopic findings, we conclude that Cys385 is an axial ligand of isolated KI.  相似文献   
14.
AIM: A randomized, two-way, crossover, bioequivalence study was conducted in 25 fasting, healthy, male volunteers to compare two brands of fexofenadine 180 mg tablets, FEXOFENADINE 180 mg Film Tablet (Drogsan A.S., Ankara, Turkey) as test and Telfast 180 mg Tablet (Aventis Pharma, Frankfurt am Main, Germany) as a reference product. METHOD: One tablet of either formulation was administered after 10 h of overnight fasting. After dosing, serial blood samples were collected during a period of 48 hours. Plasma samples were analysed for fexofenadine by a validated HPLC method. The pharmacokinetic parameters AUC(0-48), AUC(0-alpha), C(max), T(max), K(el), T(1/2), and CL were determined from plasma concentration-time profiles for both formulations and were compared statistically. RESULTS AND CONCLUSIONS: The analysis of variance (ANOVA) did not show any significant difference between the two formulations and 90% confidence intervals (CI) fell within the acceptable range, satisfying the bioequivalence criteria of the FDA. Based on these statistical inferences it was concluded that the two brands exhibited comparable pharmacokinetics profiles and that Drogsan's Fexofenadine is equivalent to Telfast of Aventis Pharma, Frankfurt am Main, Germany.  相似文献   
15.
16.
Fluorescent protein markers are widely used to report plant membrane traffic; however, effective protocols to quantify fluorescence or marker expression are lacking. Here the 20 residue self-cleaving 2A peptide from Foot and Mouth Disease Virus was used to construct polyproteins that expressed a trafficked marker in fixed stoichiometry with a reference protein in a different cellular compartment. Various pairs of compartments were simultaneously targeted. Together with a bespoke image analysis tool, these constructs allowed biosynthetic membrane traffic to be assayed with markedly improved sensitivity, dynamic range and statistical significance using protocols compatible with the common plant transfection and transgenic systems. As marker and effector expression could be monitored in populations or individual cells, saturation phenomena could be avoided and stochastic or epigenetic influences could be controlled. Surprisingly, mutational analysis of the ratiometric assay constructs revealed that the 2A peptide was dispensable for efficient cleavage of polyproteins carrying a single internal signal peptide, whereas the signal peptide was essential. In contrast, a construct bearing two signal peptide/anchors required 2A for efficient separation and stability, but 2A caused the amino-terminal moiety of such fusions to be mis-sorted to the vacuole. A model to account for the behaviour of 2A in these and other studies in plants is proposed.  相似文献   
17.
18.
Development of versatile and flexible assembly systems for fabrication of functional hybrid nanomaterials with well-defined hierarchical and spatial organization is of a significant importance in practical nanobiotechnology applications. Here we demonstrate a bio-enabled self-assembly technique for fabrication of multi-layered protein and nanometallic assemblies utilizing a modular gold-binding (AuBP1) fusion tag. To accomplish the bottom-up assembly we first genetically fused the AuBP1 peptide sequence to the C'-terminus of maltose-binding protein (MBP) using two different linkers to produce MBP-AuBP1 hetero-functional constructs. Using various spectroscopic techniques, surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR), we verified the exceptional binding and self-assembly characteristics of AuBP1 peptide. The AuBP1 peptide tag can direct the organization of recombinant MBP protein on various gold surfaces through an efficient control of the organic-inorganic interface at the molecular level. Furthermore using a combination of soft-lithography, self-assembly techniques and advanced AuBP1 peptide tag technology, we produced spatially and hierarchically controlled protein multi-layered assemblies on gold nanoparticle arrays with high molecular packing density and pattering efficiency in simple, reproducible steps. This model system offers layer-by-layer assembly capability based on specific AuBP1 peptide tag and constitutes novel biological routes for biofabrication of various protein arrays, plasmon-active nanometallic assemblies and devices with controlled organization, packing density and architecture.  相似文献   
19.

Background

Proteomics and metalloproteomics are rapidly developing interdisciplinary fields providing enormous amounts of data to be classified, evaluated and interpreted. Approaches offered by bioinformatics and also by biostatistical data analysis and treatment are therefore of extreme interest. Numerous methods are now available as commercial or open source tools for data processing and modelling ready to support the analysis of various datasets. The analysis of scientific data remains a big challenge, because each new task sets its specific requirements and constraints that call for the design of a targeted data pre-processing approach.

Methodology/Principal Findings

This study proposes a mathematical approach for evaluating and classifying datasets obtained by electrochemical analysis of metallothionein in rat 9 tissues (brain, heart, kidney, eye, spleen, gonad, blood, liver and femoral muscle). Tissue extracts were heated and then analysed using the differential pulse voltammetry Brdicka reaction. The voltammograms were subsequently processed. Classification models were designed making separate use of two groups of attributes, namely attributes describing local extremes, and derived attributes resulting from the level = 5 wavelet transform.

Conclusions/Significance

On the basis of our results, we were able to construct a decision tree that makes it possible to distinguish among electrochemical analysis data resulting from measurements of all the considered tissues. In other words, we found a way to classify an unknown rat tissue based on electrochemical analysis of the metallothionein in this tissue.  相似文献   
20.
The microtubule-associated protein tau can associate with various other proteins in addition to tubulin, including the SH3 domains of Src family tyrosine kinases. Tau is well known to aggregate to form hyperphosphorylated filamentous deposits in several neurodegenerative diseases (tauopathies) including Alzheimer disease. We now report that tau can bind to SH3 domains derived from the p85alpha subunit of phosphatidylinositol 3-kinase, phospholipase Cgamma1, and the N-terminal (but not the C-terminal) SH3 of Grb2 as well as to the kinases Fyn, cSrc, and Fgr. However, the short inserts found in neuron-specific isoforms of Src prevented the binding of tau. The experimentally determined binding of tau peptides is well accounted for when modeled into the peptide binding cleft in the SH3 domain of Fyn. After phosphorylation in vitro or in transfected cells, tau showed reduced binding to SH3 domains; no binding was detected with hyperphosphorylated tau isolated from Alzheimer brain, but SH3 binding was restored by phosphatase treatment. Tau mutants with serines and threonines replaced by glutamate, to mimic phosphorylation, showed reduced SH3 binding. These results strongly suggest that tau has a potential role in cell signaling in addition to its accepted role in cytoskeletal assembly, with regulation by phosphorylation that may be disrupted in the tauopathies including Alzheimer disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号