首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   31篇
  2022年   1篇
  2021年   8篇
  2019年   3篇
  2018年   5篇
  2017年   1篇
  2016年   7篇
  2015年   11篇
  2014年   19篇
  2013年   19篇
  2012年   24篇
  2011年   18篇
  2010年   12篇
  2009年   9篇
  2008年   13篇
  2007年   19篇
  2006年   9篇
  2005年   11篇
  2004年   8篇
  2003年   12篇
  2002年   12篇
  2001年   5篇
  2000年   1篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1990年   6篇
  1989年   3篇
  1986年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1957年   1篇
排序方式: 共有275条查询结果,搜索用时 31 毫秒
121.
The PI3K-AKT pathway is frequently activated in human cancers, including breast cancer, and its activation appears to be critical for tumor maintenance. Some malignant cells are dependent on activated AKT for their survival; tumors exhibiting elevated AKT activity show sensitivity to its inhibition, providing an Achilles heel for their treatment. Here we show that the PKCη isoform is a negative regulator of the AKT signaling pathway. The IGF-I induced phosphorylation on Ser473 of AKT was inhibited by the PKCη-induced expression in MCF-7 breast adenocarcinoma cancer cells. This was further confirmed in shRNA PKCη-knocked-down MCF-7 cells, demonstrating elevated phosphorylation on AKT Ser473. While PKCη exhibited negative regulation on AKT phosphorylation it did not alter the IGF-I induced ERK phosphorylation. However, it enhanced ERK phosphorylation when stimulated by PDGF. Moreover, its effects on IGF-I/AKT and PDGF/ERK pathways were in correlation with cell proliferation. We further show that both PKCη and IGF-I confer protection against UV-induced apoptosis and cell death having additive effects. Although the protective effect of IGF-I involved activation of AKT, it was not affected by PKCη expression, suggesting that PKCη acts through a different route to increase cell survival. Hence, our studies show that PKCη provides negative control on AKT pathway leading to reduced cell proliferation, and further suggest that its presence/absence in breast cancer cells will affect cell death, which could be of therapeutic value.  相似文献   
122.
Akinetes, differentiated resting cells produced by many species of filamentous, heterocystous cyanobacteria, enable the organism to survive adverse conditions, such as cold winters and dry seasons, and to maintain germination capabilities until the onset of suitable conditions for vegetative growth. Mature akinetes maintain a limited level of metabolic activities, including photosynthesis. In the present study, we have characterized changes in the photosynthetic apparatus of vegetative cells and akinetes of the cyanobacterium Aphanizomenon ovalisporum Forti (Nostocales) during their development and maturation. Photosynthetic variable fluorescence was measured by microscope‐PAM (pulse‐amplitude‐modulated) fluorometry, and the fundamental composition of the photosynthetic apparatus was evaluated by fluorescence and immunological techniques. Vegetative cells and akinetes from samples of Aphanizomenon trichomes from akinete‐induced cultures at various ages demonstrated a gradual reduction, with age, in the maximal photosynthetic quantum yield in both cell types. However, the maximal quantum yield of akinetes declined slightly faster than that of their adjacent vegetative cells. Mature akinetes isolated from 6‐ to 8‐week‐old akinete‐induced cultures maintained only residual photosynthetic activity, as indicated by very low values of maximal photosynthetic quantum yields. Based on 77 K fluorescence emission data and immunodetection of PSI and PSII polypeptides, we concluded that the ratio of PSI to PSII reaction centers in mature akinetes is slightly higher than the ratio estimated for exponentially grown vegetative cells. Furthermore, the cellular abundance of these protein complexes substantially increased in akinetes relative to exponentially grown vegetative cells, presumably due to considerable increase in the biovolume of akinetes.  相似文献   
123.
124.
Hadas Weiss 《Ethnos》2013,78(5):789-805
Financialisation confronts households in the form of planning and risk management along standardised lifecycle stages like starting a family or preparing for retirement. The finance sector in Germany represents this as the exercise of responsibility. Yet German government institutions have long encouraged and rewarded a different kind of responsibly, manifested in prudent study, work and consumption habits. In this paper, I tease out from life histories of German retirees their nonchalance about planning, antipathy toward finance and strong sense of personal effort and investment. Contrasting them with the contingency and treacherousness of financial planning, I argue that financialisation is preceded by ideological work, which redefines responsibility according to its own needs and in so doing, obscures its stakes.  相似文献   
125.
Helicase motif VI is a short arginine-rich motif within the NTPase/helicase domain of the non-structural protein 3 (NS3) of the hepatitis C virus (HCV). We previously demonstrated that it reduces the catalytic activity and intracellular shuttling of protein kinase C (PKC). Thus, NS3-mediated PKC inhibition may be involved in HCV-associated hepatocellular carcinoma (HCC). In this study, we expand on our earlier results, which were obtained in experiments with short fragments of NS3, to show for the first time that the catalytically active, longer C-terminal NTPase/helicase of NS3 acts as a potent PKC inhibitor in vitro. PKC inhibition assays with the NTPase-inactive mutant NS3h-D1316A revealed a mixed type kinetic inhibition pattern. A broad range of 11 PKC isotypes was tested and all of the PKC isotypes were inhibited with IC50-values in the low micromolar range. These findings were confirmed for the wild-type NTPase/helicase domain in a non-radiometric PKC inhibition assay with ATP regeneration to rule out any effect of ATP hydrolysis caused by its NTPase activity. PKCα was inhibited with a micromolar IC50 in this assay, which compares well with our result for NS3h-D1316A (IC50 = 0.7 μM). In summary, these results confirm that catalytically active NS3 NTPase/helicase can act in an analogous manner to shorter NS3 fragments as a pseudosubstrate inhibitor of PKC.  相似文献   
126.
Citrate, a major determinant of citrus fruit quality, accumulates early in fruit development and declines towards maturation. The isomerization of citrate to isocitrate, catalyzed by aconitase is a key step in acid metabolism. Inhibition of mitochondrial aconitase activity early in fruit development contributes to acid accumulation, whereas increased cytosolic activity of aconitase causes citrate decline. It was previously hypothesized that the block in mitochondrial aconitase activity, inducing acid accumulation, is caused by citramalate. Here, we investigated the effect of citramalate and of another aconitase inhibitor, oxalomalate, on aconitase activity and regulation in callus originated from juice sacs. These compounds significantly increased citrate content and reduced the enzyme’s activity, while slightly inducing its protein level. Citramalate inhibited the mitochondrial, but not cytosolic form of the enzyme. Its external application to mandarin fruits resulted in inhibition of aconitase activity, with a transient increase in fruit acidity detected a few weeks later. The endogenous level of citramalate was analyzed in five citrus varieties: its pattern of accumulation challenged the notion of its action as an endogenous inhibitor of mitochondrial aconitase. Metabolite profiling of oxalomalate-treated cells showed significant increases in a few amino acids and organic acids. The activities of alanine transaminase, aspartate transaminase and aspartate kinase, as well as these of two γ-aminobutyrate (GABA)-shunt enzymes, succinic semialdehyde reductase (SSAR) and succinic semialdehyde dehydrogenase (SSAD) were significantly induced in oxalomalate-treated cells. It is suggested that the increase in citrate, caused by aconitase inhibition, induces amino acid synthesis and the GABA shunt, in accordance with the suggested fate of citrate during the acid decline stage in citrus fruit.  相似文献   
127.
There are conflicting data about the frequency and role of regulatory T cells (Tregs) during the course of HIV infection. Peripheral blood of a large cohort of HIV-infected patients (n = 131) at different stages of disease, including 15 long-term nonprogressors and 21 elite controllers, was analyzed to determine the frequency and phenotype of Tregs, defined as CD4(+), CD25(high), CD127(low), FoxP3(high) cells. A significantly increased relative frequency of Tregs within the CD4(+) compartment of HIV(+) patients compared to that of healthy controls (P < 0.0001) was observed. Additionally, the relative frequency of Tregs directly correlated with HIV viral load and inversely with CD4(+) counts. However, the absolute Treg number was reduced in HIV-infected patients versus healthy controls (P < 0.0001), with the exception of elite controllers (P > 0.05). The loss of absolute Treg numbers coincided with rising markers of immune activation (P < 0.0006). The initiation of antiviral therapy significantly increased absolute Treg numbers (P < 0.0031). We find that the expression of CD39, a newly defined ectonucleotidase with immunomodulatory functions on Tregs, correlated with progressive HIV disease, HIV viral load, and immune activation. Of note, when tested in peripheral blood mononuclear cells of healthy volunteers, the in vitro capacity to suppress T-cell proliferation was limited to CD4(+), CD25(high), CD39(+) T cells. Interestingly, Tregs of elite controllers exhibited not only the highest expression of CCR5, CTLA-4, and ICOS but also the lowest level of CD39. The data presented here reconcile the seemingly contradictory results of previous studies looking at Tregs in HIV and highlight the complexity of Treg-mediated immunoregulation during human viral infections.  相似文献   
128.
Hundreds of immune cell types work in coordination to maintain tissue homeostasis. Upon infection, dramatic changes occur with the localization, migration, and proliferation of the immune cells to first alert the body of the danger, confine it to limit spreading, and finally extinguish the threat and bring the tissue back to homeostasis. Since current technologies can follow the dynamics of only a limited number of cell types, we have yet to grasp the full complexity of global in vivo cell dynamics in normal developmental processes and disease. Here, we devise a computational method, digital cell quantification (DCQ), which combines genome‐wide gene expression data with an immune cell compendium to infer in vivo changes in the quantities of 213 immune cell subpopulations. DCQ was applied to study global immune cell dynamics in mice lungs at ten time points during 7 days of flu infection. We find dramatic changes in quantities of 70 immune cell types, including various innate, adaptive, and progenitor immune cells. We focus on the previously unreported dynamics of four immune dendritic cell subtypes and suggest a specific role for CD103+ CD11b DCs in early stages of disease and CD8+ pDC in late stages of flu infection.  相似文献   
129.
130.
Antibiotic resistant nosocomial infections are an important cause of mortality and morbidity in hospitals. Antibiotic cycling has been proposed to contain this spread by a coordinated use of different antibiotics. Theoretical work, however, suggests that often the random deployment of drugs ("mixing") might be the better strategy. We use an epidemiological model for a single hospital ward in order to assess the performance of cycling strategies which take into account the frequency of antibiotic resistance in the hospital ward. We assume that information on resistance frequencies stems from microbiological tests, which are performed in order to optimize individual therapy. Thus the strategy proposed here represents an optimization at population-level, which comes as a free byproduct of optimizing treatment at the individual level. We find that in most cases such an informed switching strategy outperforms both periodic cycling and mixing, despite the fact that information on the frequency of resistance is derived only from a small sub-population of patients. Furthermore we show that the success of this strategy is essentially a stochastic phenomenon taking advantage of the small population sizes in hospital wards. We find that the performance of an informed switching strategy can be improved substantially if information on resistance tests is integrated over a period of one to two weeks. Finally we argue that our findings are robust against a (moderate) preexistence of doubly resistant strains and against transmission via environmental reservoirs. Overall, our results suggest that switching between different antibiotics might be a valuable strategy in small patient populations, if the switching strategies take the frequencies of resistance alleles into account.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号