首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21009篇
  免费   1688篇
  国内免费   1720篇
  24417篇
  2024年   55篇
  2023年   316篇
  2022年   712篇
  2021年   1152篇
  2020年   765篇
  2019年   975篇
  2018年   912篇
  2017年   614篇
  2016年   911篇
  2015年   1339篇
  2014年   1518篇
  2013年   1578篇
  2012年   1933篇
  2011年   1697篇
  2010年   996篇
  2009年   921篇
  2008年   1089篇
  2007年   908篇
  2006年   828篇
  2005年   649篇
  2004年   508篇
  2003年   448篇
  2002年   371篇
  2001年   323篇
  2000年   321篇
  1999年   324篇
  1998年   208篇
  1997年   242篇
  1996年   191篇
  1995年   189篇
  1994年   162篇
  1993年   129篇
  1992年   181篇
  1991年   143篇
  1990年   146篇
  1989年   98篇
  1988年   90篇
  1987年   87篇
  1986年   63篇
  1985年   65篇
  1984年   43篇
  1983年   47篇
  1982年   21篇
  1981年   16篇
  1980年   14篇
  1979年   12篇
  1978年   10篇
  1969年   9篇
  1968年   8篇
  1965年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Removal of lake sediments is one effective approach to reduce internal nutrients of eutrophic lakes, the consequence of which is, however, unavoidably exacerbated by the disposal of the dredged sludge. A novel method is reported here to recycle the dredged sludge in an eco-friendly manner by combining solidification/stabilization treatment and floating-bed technology. The objective of the present study was to utilize the dredged lake sludge to produce ecological sludge floating-bed (ESFB) and to evaluate the water purification efficacy of ESFB combined concurrently with Acorus calamus. In doing so, dredged sludge (main material), treated industrial slag (binder) and expanded perlite (lightweight agent) were introduced as the raw materials for the production of ESFB, and then physical strength, water-resistance, toxicity characteristic leaching procedure were measured and field trial was carried out, correspondingly. For the water purification experiment, the mesocosm systems were made to evaluate the nitrogen, phosphorus and Chl-a removal efficacy of planted ESFB. The results show that with the optimum mixing ratio (sludge: 72.5%, BOF slag: 12.5% and expanded perlite: 15%), the solidified product has strong compressive strength of 1.55 MPa and flexural strength of 0.24 MPa. The heavy metal concentrations in the leachate are far lower than the detection limit. The relative softening coefficient and water absorption of solidified product were 90.3% and 11.3%. The results of the consequent water purification experiment suggest that the planted ESFB have promising removal efficiency on nitrogen, phosphorus and Chl-a. The final relative growth rate (RGR) of A. calamus was 0.31. The highest removal rate of total nitrogen (TN), total phosphorus (TP), ammonium nitrogen (NH4+-N), total dissolve phosphorus (TDP) and chlorophyll-a (Chl-a) reached 36.3%, 35.7%, 44.3%, 38.1% and 47.9%, respectively.  相似文献   
992.
In the present study, we describe the synthesis and characterization of a novel folacin C60 derivative. The compound was analyzed by FT-IR, 1H NMR, 13C NMR, LC–MS and elemental analysis. This water soluble fullerene derivative was able to scavenge both superoxide and hydroxyl radical with biocompatibility. Rat pheochromocytoma (PC12) cells treated with hydrogen peroxide underwent cytotoxicity and apoptotic death determined by MTT assay and flow cytometry analysis. As a novel derivative of C60, the folacin C60 derivative self-assembled to form spherical aggregates in H2O. Because the compound was amphiphilic, it could penetrate the cell membrane and play its distinguished role in protecting PC12 cells against hydrogen peroxide-induced cytotoxicity. The results suggest that folacin C60 derivative has the potential to prevent oxidative stress-induced cell death without evident toxicity.  相似文献   
993.
Thioredoxin (Trx) domain is a typical fold functioning in thiol/disulfide exchange. DsbE protein is one of the Trx-domain containing proteins involved in electron transfer for cytochrome c maturation in the periplasm of Escherichia coli. The soluble C-terminal Trx domain of DsbE protein was overexpressed and purified to homogeneity. We herein report biochemical characterization of the structural and redox properties of this domain. During redox reaction, the domain undergoes a structural transformation resulting in a more stable reduced form with a free energy difference (DeltaDeltaG(Redox)) of ca. 5 kcal/mol, but the thiol/disulfide exchange exhibits very low reactivity. The standard redox potential (E0') for the active thiol/disulfide is -0.175 V and the pK(a) value of the active cysteine is around 6.8, indicating that the domain acts as a weak reductant. This implies that the membrane-anchored DsbE protein may provide driven reducing power for the redox reaction in the thiol/disulfide exchange pathway.  相似文献   
994.
Hu HY  Li Q  Cheng HC  Du HN 《Biopolymers》2001,62(1):15-21
Cross beta-sheet structure formation and abnormal aggregation of proteins are thought to be pathological characteristics of some neurodegenerative disorders. To investigate the novel structural transformation and aggregation, the solid-state secondary structures of some proteins and peptides associated in thin films were determined by circular dichroism spectroscopy. Insulin, lysozyme, DsbA protein, luciferase, and ovalbumin peptide fall into one group; they show no or slight structural rearrangement from solution to the solid state. Another group, including bovine serum albumin, ovalbumin, alpha-synuclein, and plasminogen activator inhibitor-1 (PAIRC) peptide, undergo structural transformation with an increase of beta-sheet structure in the solid state. The beta-sheet formation of PAIRC peptide may reflect the structural transformation of the serpin reactive center that is relevant to the inhibitor activity. The beta-sheet structure of alpha-synuclein in the solid state may correspond to the amyloid-like aggregates, which are implicated in the pathogenesis of some neurodegenerative diseases.  相似文献   
995.
Hematopoietic progenitor kinase 1 (HPK1), a mammalian Ste20-related serine/threonine protein kinase, is a hematopoietic-specific upstream activator of the c-Jun N-terminal kinase. Here, we provide evidence to demonstrate the involvement of HPK1 in T cell receptor (TCR) signaling. HPK1 was activated and tyrosine-phosphorylated with similar kinetics following TCR/CD3 or pervanadate stimulation. Co-expression of protein-tyrosine kinases, Lck and Zap70, with HPK1 led to HPK1 activation and tyrosine phosphorylation in transfected mammalian cells. Upon TCR/CD3 stimulation, HPK1 formed inducible complexes with the adapters Nck and Crk with different kinetics, whereas it constitutively interacted with the adapters Grb2 and CrkL in Jurkat T cells. Interestingly, HPK1 also inducibly associated with linker for activation of T cells (LAT) through its proline-rich motif and translocated into glycolipid-enriched microdomains (also called lipid rafts) following TCR/CD3 stimulation, suggesting a critical role for LAT in the regulation of HPK1. Together, these results identify HPK1 as a new component of TCR signaling. T cell-specific signaling molecules Lck, Zap70, and LAT play roles in the regulation of HPK1 during TCR signaling. Differential complex formation between HPK1 and adapters highlights the possible involvement of HPK1 in multiple signaling pathways in T cells.  相似文献   
996.
Interferons (IFNs) and retinoids are potent biological response modifiers. The IFN-beta and all-trans-retinoic acid combination, but not these single agents individually, induces death in several tumor cell lines. To elucidate the molecular basis for these actions, we have employed an antisense knockout approach to identify the gene products that mediate cell death and isolated several genes associated with retinoid-IFN-induced mortality (GRIMs). One of the GRIM cDNAs, GRIM-12, was identical to human thioredoxin reductase (TR). To define the functional relevance of TR to cell death and to define its mechanism of death-modulating functions, we generated mutants of TR and studied their influence on the IFN/RA-induced death regulatory functions of caspases. Wild-type TR activates cell death that was inhibited in the presence of caspase inhibitors or catalytically inactive caspases. A mutant TR, lacking the active site cysteines, inhibits the cell death induced by caspase 8. IFN/all-trans-retinoic acid-induced cytochrome c release from the mitochondrion was promoted in the presence of wild type and was inhibited in the presence of mutant TR. We find that TR modulates the activity of caspase 8 to promote death. This effect is in part caused by the stimulation of death receptor gene expression. These studies identify a new mechanism of cell death regulation by the IFN/all-trans-retinoic acid combination involving redox enzymes.  相似文献   
997.
998.
999.
Inactivation of the visual G protein transducin, during recovery from photoexcitation, is regulated by RGS9-1, a GTPase-accelerating protein of the ubiquitous RGS protein family. Incubation of dark-adapted bovine rod outer segments with [gamma-(32)P]ATP led to RGS9-1 phosphorylation by an endogenous kinase in rod outer segment membranes, with an average stoichiometry of 0.2-0.45 mol of phosphates/mol of RGS9-1. Mass spectrometry revealed a single major site of phosphorylation, Ser(475). The kinase responsible catalyzed robust phosphorylation of recombinant RGS9-1 and not of an S475A mutant. A synthetic peptide corresponding to the region surrounding Ser(475) was also phosphorylated, and a similar peptide with the S475A substitution inhibited RGS9-1 phosphorylation. The RGS9-1 kinase is a peripheral membrane protein that co-purifies with rhodopsin in sucrose gradients and can be extracted in buffers of high ionic strength. It is not inhibited or activated significantly by a panel of inhibitors or activators of protein kinase A, protein kinase G, rhodopsin kinase, CaM kinase II, casein kinase II, or cyclin-dependent kinase 5, at concentrations 50 or more times higher than their reported IC(50) or K(i) values. It was inhibited by the protein kinase C inhibitor bisindolylmaleimide I and by lowering Ca(2+) to nanomolar levels with EGTA; however, it was not stimulated by the addition of phorbol ester, under conditions that significantly enhanced rhodopsin phosphorylation. A monoclonal antibody specific for the Ser(475)-phosphorylated form of RGS9-1 recognized RGS9-1 in immunoblots of dark-adapted mouse retina. Retinas from light-adapted mice had much lower levels of RGS9-1 phosphorylation. Thus, RGS9-1 is phosphorylated on Ser(475) in vivo, and the phosphorylation level is regulated by light and by [Ca(2+)], suggesting the importance of the modification in light adaptation.  相似文献   
1000.
To examine signaling pathways underlying transforming growth factor-beta (TGF-beta)-mediated changes in cell morphology, we used a microarray system to identify downstream target genes that may play a role in this process. Through this approach, we found that the NET1 gene was induced upon TGF-beta treatment in several cell types. NET1 is a guanine nucleotide exchange factor for RhoA whose activity has been implicated in stress fiber formation. In the Swiss 3T3 cell line, TGF-beta induces NET1 expression, and this correlated with an increase in stress fiber formation. Overexpression of the wild type NET1 gene increases stress fiber formation, and overexpression of a dominant negative NET1 mutant (L392E) prevented TGF-beta dependent increase in stress fiber formation. Furthermore, treatment of the cells with a RhoA kinase inhibitor Y-27632 blocks TGF-beta-induced stress fiber formation. By using a stable cell line expressing dominant negative Smad3, we found that the Smad signaling pathway is essential for the induction of NET1, which in turn leads to the increase of Rho activity. Taken together, those data suggest that induction of NET1 is important for the increase of Rho activity upon TGF-beta treatment, which may represent the critical trigger for a variety of downstream events in different cells. Our results support the presence of a novel signaling pathway by which TGF-beta may regulate the formation of stress fibers and reorganization of cytoskeletal structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号