排序方式: 共有142条查询结果,搜索用时 15 毫秒
21.
Zuhal Keskil Cem Z. G rgü n Ugur Hodoglugil Hakan Zengil 《Chronobiology international》1996,13(6):465-475
The presence of time-dependent variations in the in vitro sensitivity of aorta preparations to either vasoconstricting or relaxing agents was investigated in rats maintained in light from 08: 00 to 20: 00 and in darkness from 20: 00 to 08: 00. Rat thoracic aorta rings were obtained from animals sacrificed at four different times of the day. The rat aorta was found to be more sensitive to the constricting effect of phenylephrine at 15: 00, and of 5-hydroxytryptamine at 21: 00. On the other hand, both endothelium-dependent and -independent relaxations were more remarkable at 03: 00 than at other times of the day. These variations represented significant circadian rhythms when analyzed by analysis of variance. Different in vitro responsiveness to these agents might reflect changes in the sensitivity and/or number of related receptors in vascular preparations. In conclusion, the circadian time of animal sacrifice to obtain vascular preparations constitutes an important aspect of the research method and a key determinant of findings. (Chronobiology International, 13(6), 465-475, 1996) 相似文献
22.
Claudia Siegl Patricia Hamminger Herbert Jank Uwe Ahting Benedikt Bader Adrian Danek Allison Gregory Monika Hartig Susan Hayflick Andreas Hermann Holger Prokisch Esther M. Sammler Zuhal Yapici Rainer Prohaska Ulrich Salzer 《PloS one》2013,8(10)
Neuroacanthocytosis (NA) refers to a group of heterogenous, rare genetic disorders, namely chorea acanthocytosis (ChAc), McLeod syndrome (MLS), Huntington’s disease-like 2 (HDL2) and pantothenate kinase associated neurodegeneration (PKAN), that mainly affect the basal ganglia and are associated with similar neurological symptoms. PKAN is also assigned to a group of rare neurodegenerative diseases, known as NBIA (neurodegeneration with brain iron accumulation), associated with iron accumulation in the basal ganglia and progressive movement disorder. Acanthocytosis, the occurrence of misshaped erythrocytes with thorny protrusions, is frequently observed in ChAc and MLS patients but less prevalent in PKAN (about 10%) and HDL2 patients. The pathological factors that lead to the formation of the acanthocytic red blood cell shape are currently unknown. The aim of this study was to determine whether NA/NBIA acanthocytes differ in their functionality from normal erythrocytes. Several flow-cytometry-based assays were applied to test the physiological responses of the plasma membrane, namely drug-induced endocytosis, phosphatidylserine exposure and calcium uptake upon treatment with lysophosphatidic acid. ChAc red cell samples clearly showed a reduced response in drug-induced endovesiculation, lysophosphatidic acid-induced phosphatidylserine exposure, and calcium uptake. Impaired responses were also observed in acanthocyte-positive NBIA (PKAN) red cells but not in patient cells without shape abnormalities. These data suggest an “acanthocytic state” of the red cell where alterations in functional and interdependent membrane properties arise together with an acanthocytic cell shape. Further elucidation of the aberrant molecular mechanisms that cause this acanthocytic state may possibly help to evaluate the pathological pathways leading to neurodegeneration. 相似文献
23.
24.
25.
Balamurugan Tangiisuran Greg Scutt Jennifer Stevenson Juliet Wright G. Onder M. Petrovic T. J. van der Cammen Chakravarthi Rajkumar Graham Davies 《PloS one》2014,9(10)
Background
Older patients are at an increased risk of developing adverse drug reactions (ADR). Of particular concern are the oldest old, which constitute an increasingly growing population. Having a validated clinical tool to identify those older patients at risk of developing an ADR during hospital stay would enable healthcare staff to put measures in place to reduce the risk of such an event developing. The current study aimed to (1) develop and (2) validate an ADR risk prediction model.Methods
We used a combination of univariate analysis and multivariate binary logistic regression to identify clinical risk factors for developing an ADR in a population of older people from a UK teaching hospital. The final ADR risk model was then validated in a European population (European dataset).Results
Six-hundred-ninety patients (median age 85 years) were enrolled in the development stage of the study. Ninety-five reports of ADR were confirmed by independent review in these patients. Five clinical variables were identified through multivariate analysis and included in our final model; each variable was attributed a score of 1. Internal validation produced an AUROC of 0.74, a sensitivity of 80%, and specificity of 55%. During the external validation stage the AUROC was 0.73, with sensitivity and specificity values of 84% and 43% respectively.Conclusions
We have developed and successfully validated a simple model to use ADR risk score in a population of patients with a median age of 85, i.e. the oldest old. The model is based on 5 clinical variables (≥8 drugs, hyperlipidaemia, raised white cell count, use of anti-diabetic agents, length of stay ≥12 days), some of which have not been previously reported. 相似文献26.
27.
Zeynep Koksal Zuhal Alim Sukru Beydemir Hasan Ozdemir 《Journal of biochemical and molecular toxicology》2016,30(11):533-538
Lactoperoxidase (LPO) plays a key role in immune response against pathogens. In this study, we examined the effects of some phenolic acids on LPO. For this purpose, bovine milk LPO was purified 380.85‐fold with a specific activity of 26.66 EU/mg and overall yield of 73.33% by using Amberlite CG‐50 H+ resin and CNBr‐activated Sepharose‐4B‐l ‐tyrosine‐sulfanilamide affinity chromatography. After purification, the in vitro effects of phenolic acids (tannic acid, 3,4‐dihydroxybenzoic acid, 3,5‐ dihydroxybenzoic acid, chlorogenic acid, sinapic acid, 4‐hydroxybenzoic acid, vanillic acid, salicylic acid, and 3‐hydroxybenzoic acid) were investigated on LPO. These phenolic acids showed potent inhibitory effect on LPO. Ki values for these phenolic acids were found as 0.0129 nM, 0.132 μM, 0.225 μM, 0.286 μM, 0.333 μM, 2.33 μM, 10.82 μM, 0.076 mM, and 0.405 mM, respectively. Sinapic acid and 4‐hydroxybenzoic acid exhibited noncompetitive inhibition; 3,4‐dihydroxybenzoic acid showed uncompetitive inhibition, and other phenolic acids showed competitive inhibition. 相似文献
28.
Zakrzewski JL Kochman AA Lu SX Terwey TH Kim TD Hubbard VM Muriglan SJ Suh D Smith OM Grubin J Patel N Chow A Cabrera-Perez J Radhakrishnan R Diab A Perales MA Rizzuto G Menet E Pamer EG Heller G Zúñiga-Pflücker JC Alpdogan O van den Brink MR 《Nature medicine》2006,12(9):1039-1047
Immunoincompetence after allogeneic hematopoietic stem cell transplantation (HSCT) affects in particular the T-cell lineage and is associated with an increased risk for infections, graft failure and malignant relapse. To generate large numbers of T-cell precursors for adoptive therapy, we cultured mouse hematopoietic stem cells (HSCs) in vitro on OP9 mouse stromal cells expressing the Notch-1 ligand Delta-like-1 (OP9-DL1). We infused these cells, together with T-cell-depleted mouse bone marrow or purified HSCs, into lethally irradiated allogeneic recipients and determined their effect on T-cell reconstitution after transplantation. Recipients of OP9-DL1-derived T-cell precursors showed increased thymic cellularity and substantially improved donor T-cell chimerism (versus recipients of bone marrow or HSCs only). OP9-DL1-derived T-cell precursors gave rise to host-tolerant CD4+ and CD8+ populations with normal T-cell antigen receptor repertoires, cytokine secretion and proliferative responses to antigen. Administration of OP9-DL1-derived T-cell precursors increased resistance to infection with Listeria monocytogenes and mediated significant graft-versus-tumor (GVT) activity but not graft-versus-host disease (GVHD). We conclude that the adoptive transfer of OP9-DL1-derived T-cell precursors markedly enhances T-cell reconstitution after transplantation, resulting in GVT activity without GVHD. 相似文献
29.
Smruthy Sivakumar F Anthony San Lucas Yasminka A Jakubek Zuhal Ozcan Jerry Fowler Paul Scheet 《Genetics》2021,217(1)
Somatic copy number alterations (SCNAs) serve as hallmarks of tumorigenesis and often result in deviations from one-to-one allelic ratios at heterozygous loci, leading to allelic imbalance (AI). The Cancer Genome Atlas (TCGA) reports SCNAs identified using a circular binary segmentation algorithm, providing segment mean copy number estimates from single-nucleotide polymorphism DNA microarray total intensities (log R ratio), but not allele-specific intensities (“B allele” frequencies) that inform of AI. Our approach provides more sensitive identification of SCNAs by modeling the “B allele” frequencies jointly, thereby bolstering the catalog of chromosomal alterations in this widely utilized resource. Here we present AI summaries for all 33 tumor sites in TCGA, including those induced by SCNAs and copy-neutral loss-of-heterozygosity (cnLOH). We identified AI in 94% of the tumors, higher than in previous reports. Recurrent events included deletions of 17p, 9q, 3p, amplifications of 8q, 1q, 7p, as well as mixed event types on 8p and 13q. We also observed both site-specific and pan-cancer (spanning 17p) cnLOH, patterns which have not been comprehensively characterized. The identification of such cnLOH events elucidates tumor suppressors and multi-hit pathways to carcinogenesis. We also contrast the landscapes inferred from AI- and total intensity-derived SCNAs and propose an automated procedure to improve and adjust SCNAs in TCGA for cases where high levels of aneuploidy obscured baseline intensity identification. Our findings support the exploration of additional methods for robust automated inference procedures and to aid empirical discoveries across TCGA. 相似文献
30.
Facultative phototrophic bacterium Rhodobacter capsulatus DsbA-null mutants are proficient in photosynthesis but are defective in respiration especially in enriched growth medium at 35 degrees C. They also exhibit severe pleiotropic phenotypes extending from motility defects to osmofragility and oxidative stresses. In this work, using a combined proteomics and molecular genetics approach, we demonstrated that the respiratory defect of R. capsulatus DsbA-null mutants originates from the overproduction of the periplasmic protease DegP, which renders them temperature-sensitive for growth. The DsbA-null mutants reverted frequently to overcome this growth defect by decreasing, but not completely eliminating, their DegP activity. In agreement with these findings, we showed that overproduction of DegP abolishes the newly restored respiratory growth ability of the revertants in all growth media. Structural localizations of the reversion mutations in DegP revealed the regions and amino acids that are important for its protease-chaperone activity. Remarkably although R. capsulatus DsbA-null or DegP-null mutants were viable, DegP-null DsbA-null double mutants were lethal at all growth temperatures. This is unlike Escherichia coli, and it indicates that in the absence of DsbA some DegP activity is required for survival of R. capsulatus. Absence of a DegQ protease homologue in some bacteria together with major structural variations among the DegP homologues, including a critical disulfide bond-bearing region, correlates well with the differences seen between various species like R. capsulatus and E. coli. Our findings illustrate the occurrence of two related but distinct periplasmic protease families in bacterial species. 相似文献