首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   15篇
  2023年   4篇
  2022年   4篇
  2021年   8篇
  2020年   8篇
  2019年   9篇
  2018年   9篇
  2017年   9篇
  2016年   13篇
  2015年   13篇
  2014年   9篇
  2013年   21篇
  2012年   26篇
  2011年   21篇
  2010年   13篇
  2009年   2篇
  2008年   4篇
  2007年   5篇
  2006年   4篇
  2005年   4篇
  2004年   4篇
  2003年   5篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1993年   2篇
  1992年   1篇
  1991年   4篇
  1990年   3篇
  1984年   1篇
  1982年   1篇
  1974年   1篇
  1965年   1篇
排序方式: 共有218条查询结果,搜索用时 31 毫秒
31.
GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop   总被引:1,自引:0,他引:1  
The GeneMANIA Cytoscape plugin brings fast gene function prediction capabilities to the desktop. GeneMANIA identifies the most related genes to a query gene set using a guilt-by-association approach. The plugin uses over 800 networks from six organisms and each related gene is traceable to the source network used to make the prediction. Users may add their own interaction networks and expression profile data to complement or override the default data. Availability and Implementation: The GeneMANIA Cytoscape plugin is implemented in Java and is freely available at http://www.genemania.org/plugin/.  相似文献   
32.
Nazir A  Sammi SR  Singh P  Tripathi RK 《PloS one》2010,5(12):e15312

Background

Caenorhabditis elegans has emerged as a very powerful model for studying the host pathogen interactions. Despite the absence of a naturally occurring viral infection for C. elegans, the model is now being exploited experimentally to study the basic aspects of virus-host interplay. The data generated from recent studies suggests that the virus that infects mammalian cells does infect, replicate and accumulate in C. elegans.

Methodology/Principal Findings

We took advantage of the easy-to-achieve protein introduction in C. elegans and employing the methodology, we administered HIV-1 protein Nef into live worms. Nef is known to be an important protein for exacerbating HIV-1 pathogenesis in host by enhancing viral replication. The deletion of nef from the viral genome has been reported to inhibit its replication in the host, thereby leading to delayed pathogenesis. Our studies, employing Nef introduction into C. elegans, led to creation of an in-vivo model that allowed us to study, whether or not, the protein induces effect in the whole organism. We observed a marked lipodystrophy, effect on neuromuscular function, impaired fertility and reduced longevity in the worms exposed to Nef. The observed effects resemble to those observed in Nef transgenic mice and most interestingly the effects also relate to some of the pathogenic aspects exhibited by human AIDS patients.

Conclusions/Significance

Our studies underline the importance of this in vivo model for studying the interactions of Nef with host proteins, which could further be used for identifying possible inhibitors of such interactions.  相似文献   
33.
Due to non-productive infections, mice are not a good model to study some human adenoviruses. However, mice provide an excellent model to study the metabolic effects of human adenovirus, Ad36. Research interest in Ad36 is increasing rapidly, and consequently an increase in the use of mice as a model is anticipated. However, little is known about the transmission potential of Ad36 from infected mice to other laboratory animals or personnel. While underestimating the infectivity could promote inadvertent spread of Ad36, overstating it could drain valuable laboratory resources and animals. Therefore, we determined the duration of infectivity in female C57BL/6J mice that were experimentally infected with human adenoviruses Ad36 or Ad2. Other uninfected mice were co-housed for one week with the experimentally-infected animals, four or eight weeks postinfection. Additionally, uninfected mice were housed in the cages of mice that were infected with Ad36, 12 weeks earlier. The presence of viral DNA in tissues was used to indicate infection of mice. Although experimentally-infected mice harboured viral DNA at least up to 12 weeks, the horizontal transmission of infection was observed in co-housed mice only up to four weeks postinfection. Thus, Ad36-infected mice should be considered potentially infective for eight weeks and appropriate handling and barrier containment should be used. After eight week postinfection, horizontal transmission appears unlikely. This information may provide guidelines for animal handling, and experimental design using Ad36, which may increase safety for laboratory personnel and reduce the number of mice required for experiments.  相似文献   
34.
FoxM1 is known to play important role in the development and progression of many malignancies including pancreatic cancer. Studies have shown that the acquisition of epithelial-to-mesenchymal transition (EMT) phenotype and induction of cancer stem cell (CSC) or cancer stem-like cell phenotypes are highly inter-related, and contributes to drug resistance, tumor recurrence, and metastasis. The molecular mechanism(s) by which FoxM1 contributes to the acquisition of EMT phenotype and induction of CSC self-renewal capacity is poorly understood. Therefore, we established FoxM1 over-expressing pancreatic cancer (AsPC-1) cells, which showed increased cell growth, clonogenicity, and cell migration. Moreover, over-expression of FoxM1 led to the acquisition of EMT phenotype by activation of mesenchymal cell markers, ZEB1, ZEB2, Snail2, E-cadherin, and vimentin, which is consistent with increased sphere-forming (pancreatospheres) capacity and expression of CSC surface markers (CD44 and EpCAM). We also found that over-expression of FoxM1 led to decreased expression of miRNAs (let-7a, let-7b, let-7c, miR-200b, and miR-200c); however, re-expression of miR-200b inhibited the expression of ZEB1, ZEB2, vimentin as well as FoxM1, and induced the expression of E-cadherin, leading to the reversal of EMT phenotype. Finally, we found that genistein, a natural chemo-preventive agent, inhibited cell growth, clonogenicity, cell migration and invasion, EMT phenotype, and formation of pancreatospheres consistent with reduced expression of CD44 and EpCAM. These results suggest, for the first time, that FoxM1 over-expression is responsible for the acquisition of EMT and CSC phenotype, which is in part mediated through the regulation of miR-200b and these processes, could be easily attenuated by genistein.  相似文献   
35.

Background

The approach of RNAi mediated gene knockdown, employing exogenous dsRNA, is being beneficially exploited in various fields of functional genomics. The immense utility of the approach came to fore from studies with model system C. elegans, but quickly became applicable with varied research models ranging from in vitro to various in vivo systems. Previously, there have been reports on the refractoriness of the neuronal cells to RNAi mediated gene silencing following which several modulators like eri-1 and lin-15 were described in C. elegans which, when present, would negatively impact the gene knockdown.

Methodology/Principal Findings

Taking a clue from these findings, we went on to screen hypothesis-driven- methodologies towards exploring the efficiency in the process of RNAi under various experimental conditions, wherein these genes would be knocked down preceding to, or concurrently with, the knocking down of a gene of interest. For determining the efficiency of gene knockdown, we chose to study visually stark phenotypes of uncoordinated movement, dumpy body morphology and blistered cuticle obtained by knocking down of genes unc-73, dpy-9 and bli-3 respectively, employing the RNAi-by-feeding protocol in model system C. elegans.

Conclusions/Significance

Our studies led to a very interesting outcome as the results reveal that amongst various methods tested, pre-incubation with eri-1 dsRNA synthesizing bacteria followed by co-incubation with eri-1 and gene-of-interest dsRNA synthesizing bacteria leads to the most efficient gene silencing as observed by the analysis of marker phenotypes. This provides an approach for effectively employing RNAi induced gene silencing while working with different genetic backgrounds including transgenic and mutant strains.  相似文献   
36.
To identify genomic segments associated with days to flowering (DF) and leaf shape in pigeonpea, QTL-seq approach has been used in the present study. Genome-wide SNP profiling of extreme phenotypic bulks was conducted for both the traits from the segregating population (F2) derived from the cross combination- ICP 5529 × ICP 11605. A total of 126.63 million paired-end (PE) whole-genome resequencing data were generated for five samples, including one parent ICP 5529 (obcordate leaf and late-flowering plant), early and late flowering pools (EF and LF) and obcordate and lanceolate leaf shape pools (OLF and LLS). The QTL-seq identified two significant genomic regions, one on CcLG03 (1.58 Mb region spanned from 19.22 to 20.80 Mb interval) for days to flowering (LF and EF pools) and another on CcLG08 (2.19 Mb region spanned from 6.69 to 8.88 Mb interval) for OLF and LLF pools, respectively. Analysis of genomic regions associated SNPs with days to flowering and leaf shape revealed 5 genic SNPs present in the unique regions. The identified genomic regions for days to flowering were also validated with the genotyping-by-sequencing based classical QTL mapping method. A comparative analysis of the identified seven genes associated with days to flowering on 12 Fabaceae genomes, showed synteny with 9 genomes. A total of 153 genes were identified through the synteny analysis ranging from 13 to 36. This study demonstrates the usefulness of QTL-seq approach in precise identification of candidate gene(s) for days to flowering and leaf shape which can be deployed for pigeonpea improvement.Subject terms: Genetic association study, Plant hybridization

QTL-seq approach was utilized for mapping of genomic regions/genes associated with days to flowering and leaf shape in pigeonpea. Analysis of genomic regions and associated SNPs with days to flowering and leaf shape revealed 1 and 4 non-synonymous SNPs, respectively. The study demonstrated sequencing-based trait mapping approach can accelerate trait mapping of the targeted traits.  相似文献   
37.
Platelet-derived growth factor-D (PDGF-D) can regulate many cellular processes, including cell proliferation, apoptosis, transformation, migration, invasion, angiogenesis and metastasis. Therefore PDGF-D signaling has been considered to be important in human malignancies, and thus PDGF-D signaling may represent a novel therapeutic target, and as such suggests that the development of agents that will target PDGF-D signaling is likely to have a significant therapeutic impact on human cancers. This mini-review describes the mechanisms of signal transduction associated with PDGF-D signaling to support the role of PDGF-D in the carcinogenesis. Moreover, we summarize data on several PDGF-D inhibitors especially naturally occurring “chemopreventive agent” such an indole compound, which we believe could serve as a novel agent for the prevention of tumor progression and/or treatment of human malignancies by targeted inactivation of PDGF-D signaling.  相似文献   
38.
39.
40.
Pseudomonas aeruginosa is an opportunistic human pathogen and has been established as a model organism to study bacterial biofilm formation. At least three exopolysaccharides (alginate, Psl, and Pel) contribute to the formation of biofilms in this organism. Here mutants deficient in the production of one or more of these polysaccharides were generated to investigate how these polymers interactively contribute to biofilm formation. Confocal laser scanning microscopy of biofilms formed in flow chambers showed that mutants deficient in alginate biosynthesis developed biofilms with a decreased proportion of viable cells than alginate-producing strains, indicating a role of alginate in viability of cells in biofilms. Alginate-deficient mutants showed enhanced extracellular DNA (eDNA)-containing surface structures impacting the biofilm architecture. PAO1 ΔpslA Δalg8 overproduced Pel, and eDNA showing meshwork-like structures presumably based on an interaction between both polymers were observed. The formation of characteristic mushroom-like structures required both Psl and alginate, whereas Pel appeared to play a role in biofilm cell density and/or the compactness of the biofilm. Mutants producing only alginate, i.e., mutants deficient in both Psl and Pel production, lost their ability to form biofilms. A lack of Psl enhanced the production of Pel, and the absence of Pel enhanced the production of alginate. The function of Psl in attachment was independent of alginate and Pel. A 30% decrease in Psl promoter activity in the alginate-overproducing MucA-negative mutant PDO300 suggested inverse regulation of both biosynthesis operons. Overall, this study demonstrated that the various exopolysaccharides and eDNA interactively contribute to the biofilm architecture of P. aeruginosa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号