全文获取类型
收费全文 | 224篇 |
免费 | 4篇 |
专业分类
228篇 |
出版年
2021年 | 4篇 |
2020年 | 2篇 |
2019年 | 4篇 |
2018年 | 1篇 |
2017年 | 8篇 |
2016年 | 2篇 |
2015年 | 4篇 |
2014年 | 9篇 |
2013年 | 15篇 |
2012年 | 12篇 |
2011年 | 16篇 |
2010年 | 10篇 |
2009年 | 5篇 |
2008年 | 11篇 |
2007年 | 11篇 |
2006年 | 22篇 |
2005年 | 14篇 |
2004年 | 18篇 |
2003年 | 13篇 |
2002年 | 4篇 |
2001年 | 8篇 |
2000年 | 1篇 |
1999年 | 6篇 |
1998年 | 5篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 2篇 |
1994年 | 1篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1988年 | 1篇 |
1987年 | 2篇 |
1984年 | 4篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1979年 | 2篇 |
1978年 | 2篇 |
1977年 | 1篇 |
1976年 | 2篇 |
排序方式: 共有228条查询结果,搜索用时 500 毫秒
181.
Gulyás B Spenger C Beliczai Z Gulya K Kása P Jahan M Jia Z Weber U Pfeifer A Muhs A Willbold D Halldin C 《Neurochemistry international》2012,60(2):153-162
One of the major pathological landmarks of Alzheimer's disease and other neurodegenerative diseases is the presence of amyloid deposits in the brain. The early non-invasive visualization of amyloid is a major objective of recent diagnostic neuroimaging approaches, including positron emission tomography (PET), with an eye on follow-up of disease progression and/or therapy efficacy. The development of molecular imaging biomarkers with binding affinity to amyloid in the brain is therefore in the forefront of imaging biomarker and radiochemistry research. Recently, a dodecamer peptide (amino acid sequence=QSHYRHISPAQV; denominated D1 or ACI-80) was identified as a prospective ligand candidate, binding with high ex vivo affinity to L-Aβ-amyloid (K(d): 0.4 μM). In order to assess the ligand's capacity to visualize amyloid in Alzheimer's disease (AD), two (125)I labeled and three (18)F labeled analogues of the peptide were synthesized and tested in post mortem human autoradiography experiments using whole hemisphere brain slices obtained from deceased AD patients and age matched control subjects. The (18)F-labeled radioligands showed more promising visualization capacity of amyloid that the (125)I-labeled radioligands. In the case of each (18)F radioligands the grey matter uptake in the AD brains was significantly higher than that in control brains. Furthermore, the grey matter: white matter uptake ratio was over ~2, the difference being significant for each (18)F-radioligands. The regional distribution of the uptake of the various radioligands systematically shows a congruent pattern between the high uptake regions and spots in the autoradiographic images and the disease specific signals obtained in adjacent or identical brain slices labeled with histological, immunohistochemical or autoradiographic stains for amyloid deposits or activated astrocytes. The present data, using post mortem human brain autoradiography in whole hemisphere human brains obtained from deceased AD patients and age matched control subjects, support the visualization capacity of the radiolabeled ACI-80 analogues of amyloid deposits in the human brain. Further studies are warranted to explore the usefulness of the (18)F-labeled analogues as in vivo molecular imaging biomarkers in diagnostic PET studies. 相似文献
182.
Rita Salánki Csaba H?s Norbert Orgovan Beatrix Péter Noémi Sándor Zsuzsa Bajtay Anna Erdei Robert Horvath Bálint Szabó 《PloS one》2014,9(10)
Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today’s techniques typically have an extremely low throughput (5–10 cells per day). Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min). We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a sub-population of strongly fibrinogen adherent cells appearing in macrophages and highly represented in dendritic cells, but not observed in monocytes. 相似文献
183.
184.
185.
186.
Rab A Bartoszewski R Jurkuvenaite A Wakefield J Collawn JF Bebok Z 《American journal of physiology. Cell physiology》2007,292(2):C756-C766
The unfolded protein response (UPR) is a cellular recovery mechanism activated by endoplasmic reticulum (ER) stress. The UPR is coordinated with the ER-associated degradation (ERAD) to regulate the protein load at the ER. In the present study, we tested how membrane protein biogenesis is regulated through the UPR in epithelia, using the cystic fibrosis transmembrane conductance regulator (CFTR) as a model. Pharmacological methods such as proteasome inhibition and treatment with brefeldin A and tunicamycin were used to induce ER stress and activate the UPR as monitored by increased levels of spliced XBP1 and BiP mRNA. The results indicate that activation of the UPR is followed by a significant decrease in genomic CFTR mRNA levels without significant changes in the mRNA levels of another membrane protein, the transferrin receptor. We also tested whether overexpression of a wild-type CFTR transgene in epithelia expressing endogenous wild-type CFTR activated the UPR. Although CFTR maturation is inefficient in this setting, the UPR was not activated. However, pharmacological induction of ER stress in these cells also led to decreased endogenous CFTR mRNA levels without affecting recombinant CFTR message levels. These results demonstrate that under ER stress conditions, endogenous CFTR biogenesis is regulated by the UPR through alterations in mRNA levels and posttranslationally by ERAD, whereas recombinant CFTR expression is regulated only by ERAD. endoplasmic reticulum-associated degradation; messenger ribonucleic acid 相似文献
187.
Histamine increased specifically the phagocytic activity of the unicellular Tetrahymena, whereas insulin had no influence on it. Insulin antagonized the phagocytosis stimulating action of histamine after simultaneous exposure and after preexposure two days earlier as well, although in the latter case to a lesser degree. Double exposure to a combination of histamine + insulin didn't influence the phagocytic activity at all, demonstrating the histamine antagonizing effect of insulin in this model. 相似文献
188.
P��ter T��trai Krisztina Egedi ��ron Somor��cz Toin H. van Kuppevelt Gerdy ten Dam Malcolm Lyon Jon A. Deakin Andr��s Kiss Zsuzsa Schaff Ilona Kovalszky 《The journal of histochemistry and cytochemistry》2010,58(5):429-441
Heparan sulfate (HS), due to its ability to interact with a multitude of HS-binding factors, is involved in a variety of physiological and pathological processes. Remarkably diverse fine structure of HS, shaped by non-exhaustive enzymatic modifications, influences the interaction of HS with its partners. Here we characterized the HS profile of normal human and rat liver, as well as alterations of HS related to liver fibrogenesis and carcinogenesis, by using sulfation-specific antibodies. The HS immunopattern was compared with the immunolocalization of selected HS proteoglycans. HS samples from normal liver and hepatocellular carcinoma (HCC) were subjected to disaccharide analysis. Expression changes of nine HS-modifying enzymes in human fibrogenic diseases and HCC were measured by quantitative RT-PCR. Increased abundance and altered immunolocalization of HS was paralleled by elevated mRNA levels of HS-modifying enzymes in the diseased liver. The strong immunoreactivity of the normal liver for 3-O-sulfated epitope further increased with disease, along with upregulation of 3-OST-1. Modest 6-O-undersulfation of HCC HS is probably explained by Sulf overexpression. Our results may prompt further investigation of the role of highly 3-O-sulfated and partially 6-O-desulfated HS in pathological processes such as hepatitis virus entry and aberrant growth factor signaling in fibrogenic liver diseases and HCC. (J Histochem Cytochem 58:429–441, 2010) 相似文献
189.
190.
Nagyeri G Radacs M Ghassemi-Nejad S Tryniszewska B Olasz K Hutas G Gyorfy Z Hascall VC Glant TT Mikecz K 《The Journal of biological chemistry》2011,286(26):23559-23569
TSG-6 (TNF-α-stimulated gene/protein 6), a hyaluronan (HA)-binding protein, has been implicated in the negative regulation of inflammatory tissue destruction. However, little is known about the tissue/cell-specific expression of TSG-6 in inflammatory processes, due to the lack of appropriate reagents for the detection of this protein in vivo. Here, we report on the development of a highly sensitive detection system and its use in cartilage proteoglycan (aggrecan)-induced arthritis, an autoimmune murine model of rheumatoid arthritis. We found significant correlation between serum concentrations of TSG-6 and arthritis severity throughout the disease process, making TSG-6 a better biomarker of inflammation than any of the other arthritis-related cytokines measured in this study. TSG-6 was present in arthritic joint tissue extracts together with the heavy chains of inter-α-inhibitor (IαI). Whereas TSG-6 was broadly detectable in arthritic synovial tissue, the highest level of TSG-6 was co-localized with tryptases in the heparin-containing secretory granules of mast cells. In vitro, TSG-6 formed complexes with the tryptases murine mast cell protease-6 and -7 via either heparin or HA. In vivo TSG-6-tryptase association could also be detected in arthritic joint extracts by co-immunoprecipitation. TSG-6 has been reported to suppress inflammatory tissue destruction by enhancing the serine protease-inhibitory activity of IαI against plasmin. TSG-6 achieves this by transferring heavy chains from IαI to HA, thus liberating the active bikunin subunit of IαI. Because bikunin is also present in mast cell granules, we propose that TSG-6 can promote inhibition of tryptase activity via a mechanism similar to inhibition of plasmin. 相似文献