首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
  2022年   1篇
  2018年   1篇
  2016年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
11.
Range size heritability refers to an intriguing pattern where closely related species occupy geographic ranges of similar extent. Its existence may indicate selection on traits emergent only at the species level, with interesting consequences for evolutionary processes. We explore whether range size heritability may be attributable to the fact that range size is largely driven by the size of geographic domains (i.e., continents, biomes, areas given by species' climatic tolerance) that tend to be similar in phylogenetically related species. Using a well-resolved phylogeny of Carnivora, we show that range sizes are indeed constrained by geographic domains and that the phylogenetic signal in range sizes diminishes if the domain sizes are accounted for. Moreover, more detailed delimitation of species' geographic domain leads to a weaker signal in range size heritability, indicating the importance of definition of the null model against which the pattern is tested. Our findings do not reject the hypothesis of range size heritability but rather unravel its underlying mechanisms. Additional analyses imply that evolutionary conservatism in niche breadth delimits the species' geographic domain, which in turn shapes the species' range size. Range size heritability patterns thus emerge as a consequence of this interplay between evolutionary and geographic constraints.  相似文献   
12.
13.
14.
Phylogenetic relationships within the Arvicolinae are examined based on two genes (mitochondrial cytb, nuclear GHR exon 10) and 296 morphological, developmental, behavioural, ecological and cytogenetic characters. To inspect the phylogenetic ‘behaviour’ of individual taxa, basic maximum‐parsimony and Bayesian phylogenetic analyses were accompanied by experiments based on different data‐partition combinations, ‘slow–fast’ character weighting, and inclusion/exclusion of individual problematic taxa. Ellobius, Prometheomys and Lagurus are the most basal arvicolines; Dicrostonyx, Phenacomys and Arborimus form a clade (Dicrostonychini s.lat.); the ‘core arvicolines’ include three subclades: Lemmini (Synaptomys, Lemmus, Myopus), Clethrionomyini (Eothenomys, Myodes) and Arvicolini (Arvicola, Chionomys, Stenocranius and Microtus, the last with six monophyletic subgenera: Alexandromys, ‘Neodon’, Mynomes, Lasiopodomys, Terricola, and Microtus s.str.). Position of Ondatra and Dinaromys is uncertain, probably compromised by highly homoplastic morphological characters.  相似文献   
15.
Phylogenetic relationships among 36 Recent and 42 extinct species of the Caninae (Canidae) were analysed, based on 360 morphological, developmental, ecological, behavioural and cytogenetic characters and 24 mitochondrial and nuclear markers. Primary phylogenetic analyses were accompanied by experimental analyses based on various combinations of data partitions and taxon samples. Leptocyon was recovered as a paraphyletic stem lineage of the Caninae; monophyly/paraphyly of the fox‐like canids (Vulpini) remains uncertain; Urocyon and Metalopex form a clade, possibly sister to all non‐Leptocyon canids; Otocyon, Nyctereutes and Nurocyon form a clade; dog‐like canids (Canini) are monophyletic (with South American Cerdocyonina and Afro‐Holarctic Canina); all South American hypercarnivores (Canis gezi, Protocyon, Speothos, Theriodictis) form a clade, close to Chrysocyon and Dusicyon; Canis arnensis, C. ferox, C. thooides, C. lepophagus and Eucyon spp. are basal to the Canina; Lycaon is an isolated African hypercarnivore; Cuon and its relatives (Xenocyon, possibly also Canis antonii, C. falconeri and Cynotherium) form a clade close to Canis s. str.; C. edwardii–C. etruscus–C. mosbachensis–C. palmidens–C. variabilis and hypercarnivorous Canis armbrusteri–C. dirus clades belong to Canis s. str. As the highly homoplastic morphological characters connected to dietary biology are the prominent characters available for the key fossil species, we conclude that macroevolutionary and palaeoecological analyses of the extinct and extant Caninae were to some extent compromised by the phylogenies used.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号