首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   3篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   4篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   5篇
  1999年   1篇
  1996年   2篇
  1994年   3篇
  1993年   1篇
  1992年   10篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   4篇
  1987年   4篇
  1985年   2篇
  1984年   2篇
  1980年   1篇
排序方式: 共有83条查询结果,搜索用时 28 毫秒
21.
Eighteen consecutive uniform overlapping synthetic peptides that spanned the entire extracellular part (residues 1–210) of the α-chain ofTorpedo californica acetylcholine receptor were screened for binding activity of125I-labeled cobratoxin. Five toxin-binding regions were localized within residues 1–10, 32–41, 100–115, 122–150, and 182–198. The five toxin-binding regions may be distinct sites or, alternatively, different faces in one or more sites.  相似文献   
22.
In previous studies, we showed that certain peptides of the HN and HC domains of the H-chain of BoNT/A bind to mouse brain synaptosomes (snps). There was either complete correspondence or overlap between peptides that bind snps and those that bind human or mouse blocking antibodies (Abs). An equimolar mixture of the overlapping peptides N5/N6/N7/N8 (residues 505–523/519–537/533–551/547–565) extended the survival time of the mice to 74 h (20%) relative to controls, which had a 50% survival time of 60 h. On the other hand, peptide N26 (residues 799–817) provided no protection (50% survival time, 58 h), but the overlapping peptide N25 (785–803) almost doubled the 50% survival time to 119 h. A mixture of the overlap N25/N26 provided an unexpected level of protection permitting 40% of the mice to survive a lethal BoNT/A dose. In the HC domain, the overlap C23/C24 (1163–1181/1177–1195) provided no protection. Peptide C31 (1275–1296) also provided no significant protection. But an equimolar mixture of peptides C15/C16 (1051–1069/1065–1083) or peptides C18/C19/C20 (1093–1111/1107–1125/1121–1139) extended the 50% survival time by 41% (to 85 h) over controls (60 h) and was able to fully protect 20% of the mice which eventually recovered. Surprisingly, the mixture of the peptides C15/C16 and C18/C19/C20, which gave a 50% survival time of 75 h, was less protective than either peptides C15/C16 or peptides C18/C19/C20. The in vivo inhibitory activity of these peptides is discussed in relation to their location in the 3-dimensional structure of the toxin molecule and their membrane receptor binding.  相似文献   
23.
    
Eighteen consecutive uniform overlapping synthetic peptides that spanned the entire extracellular part (residues 1–210) of the α-chain ofTorpedo californica acetylcholine receptor were screened for binding activity of125I-labeled cobratoxin. Five toxin-binding regions were localized within residues 1–10, 32–41, 100–115, 122–150, and 182–198. The five toxin-binding regions may be distinct sites or, alternatively, different faces in one or more sites.  相似文献   
24.
To study the structural organization of the main extracellular domain of the nicotinic acetylcholine receptor (AChR) subunit in live muscle cells, we examined the native membrane-bound receptors in cultured mouse skeletal muscle cells for their ability to bind a panel of antibodies against uniform-sized overlapping synthetic peptides which collectively represent this entire domain. The binding profile indicated that the regions 23–49,78–126,146–174, and182–210 are accessible to binding with antibody. Residues23–49,78–126, and194–210 contain binding regions for-neurotoxin and some myasthenia gravis autoantibodies. A comparison of this binding profile with the profile obtained for membrane-boundTorpedo californica AChR in isolated membrane fractions showed some similarities as well as significant differences between the subunit organization in the isolated membrane fraction and that in the membrane of live muscle cells. Regions89–104 and158–174, which are exposed in the isolated membrane fraction, are also exposed in the live cell. On the other hand, regions23–49, and182–210, which are exposed in the live cell, are not accessible in the isolated membrane and, furthermore, the region1–16, which has marginal accessibility in the cell, becomes highly accessible in the membrane isolates. The exposed regions defined by this study may be the primary targets for the initial autoimmune attack on the receptors in experimental autoimmune myasthenia gravis.  相似文献   
25.
Touir  Ahlem  Boumiza  Soumaya  Nasr  Hela ben  Bchir  Sarra  Tabka  Zouhair  Norel  Xavier  Chahed  Karim 《Biochemical genetics》2021,59(6):1457-1486

The purpose of this study was to determine the impact of six PGHS-2 genetic variants on obesity development and microvascular dysfunction. The study included 305 Tunisian subjects (186 normal weights, 35 overweights and 84 obeses). PCR analyses were used for allelic discrimination between polymorphisms. Prostaglandin (PGE2, PGI2), leptin, and matrix metalloproteinase (MMP1, 2, 3, 9) levels were evaluated by ELISA. Fatty acid composition was performed by gas chromatography–mass spectrometry. Our results revealed that subjects carrying the PGHS-2 306CC (rs5277) and 8473CC (rs5275) genotypes present higher anthropometric values compared to wild-type genotypes (306GG, BMI (Kg/m2): 27.11?±?0.58; WC (cm): 93.09?±?1.58; 306CC, BMI: 33.83?±?2.46; WC: 109.93?±?5.41; 8473TT, BMI: 27.75?±?0.68; WC: 93.96?±?1.75; 8473CC, BMI: 33.72?±?2.2; WC: 117.89?±?2.94). A reduced microvascular reactivity and a higher PGE2 level were also found in individuals with the 306CC and 8473CC genotypes in comparison to 306GG and 8473TT carriers (306GG, Peak Ach-CVC (PU/mmHg): 0.46?±?0.03; PGE2 (pg/ml): 7933.1?±?702; 306CC, Peak Ach-CVC: 0.24?±?0.01; PGE2: 13,380.3?±?966.2; 8473TT, Peak Ach-CVC: 0.48?±?0.05; PGE2: 7086.41?±?700.31; 8473CC, Peak Ach-CVC: 0.23?±?0.01; PGE2: 13,175.7?±?1165.8). Fatty acid analysis showed a significant increase of palmitic acid (PA) (34.2?±?2.09 vs. 16.82%?±?1.76, P?<?0.001), stearic acid (SA) (25.76?±?3.29 vs. 9.05%?±?2.53, P?<?0.001), and linoleic acid (LA) (5.25?±?1.18 vs. 0.5%?±?0.09, P?<?0.001) levels in individuals carrying the PGHS-2 306CC genotype when compared to GG genotype individuals. Subjects with the 8473CC genotype showed also a significant increase of PA, SA ,and LA levels when compared to TT genotype carriers (PA: 38.02?±?1.51 vs. 12.65%?±?1.54, P?<?0.001; SA: 32.96?±?1.87 vs. 1.38%?±?0.56, P?<?0.001; LA: 26.84?±?2.09 vs. 3.7%?±?1.54, P?<?0.001). Logistic regression analysis revealed that PGHS-2 306CC and 8473CC variants are significantly associated with obesity status (OR 6.25, CI (1.8–21.6), P?=?0.004; OR 3.01, CI (1.13–8.52), P?=?0.03, respectively). Haplotypes containing the C306:T8473 (OR 2.91; P?=?0.01) and G306:C8473 (OR 5.25; P?=?0.002) combinations were associated with an enhanced risk for obesity development in the studied population. In conclusion, our results highlight that PGHS-2 306G/C and 8473T/C variants could be useful indicators of obesity development, inflammation, and microvascular dysfunction among Tunisians.

  相似文献   
26.
A peptide-based immunoassay for antibodies against botulinum neurotoxin A   总被引:1,自引:0,他引:1  
Cervical dystonia (CD) is due to neck-muscle spasms that cause pain and involuntary contractions resulting in abnormal neck movements and posture. Symptoms can be relieved by injecting the affected muscle with a botulinum neurotoxin (BoNT, usually type A or type B). The therapeutic benefits are impermanent and toxin injections need to be repeated every 3-6 months. In a very small percentage of patients (less with BoNT/A than with BoNT/B) the treatment elicits blocking anti-toxin antibodies (Abs), which reduce or terminate the patient's responsiveness to further treatment. We have recently mapped (Dolimbek et al., 2006) the CD sera Ab-binding profile using a panel of 60, 19-residue peptides that encompassed the entire H chain sequence 449-1296 and overlapped consecutively by 5 residues. Abs in CD sera bound to one or more of the peptides N25, C10, C15, C20, and C31. This suggested the possibility that binding to these peptides could be used for assay of Abs in CD sera. Data analysis reported here found that Ab binding to these regions showed very significant deviations from the control responses. Of these four peptides, C10 showed the most significant level of separation between patient and control groups (p = 5 x 10(-7)) and the theoretical resolution (i.e., ability to distinguish CD patients from control, see full definition under 'Statistical analysis' in Methods), 84%, was about 4% higher than the least resolved response, C31 (p = 6 x 10(-6), resolution 80%). Since the amounts of Abs bound to a given peptide varied with the patient and not all the patients necessarily recognized all four peptides, there was the possibility that binding to combinations of two or more peptides might give a better discriminatory capability. Using two peptides, C10 plus C31, the resolution improved to 87% (p = 4 x 10(-8)). These two peptides appeared to compliment each other and negate the lower resolution of C31. Combination of three peptides gave resolutions that ranged from 85 (N25 + C15 + C31; p = 2 x 10(-7)) to 88% (C10 + C15 + C31; p = 1 x 10(-8)). Finally, using the data of all four peptides, N25 + C10 + C15 + C31, gave a resolution of 86% (p = 1 x 10(-7)). Although these levels of resolution are somewhat lower than that obtained with whole BoNT/A (resolution 97%; p = 6 x 10(-12)), it may be concluded that the two-peptide combination C10 + C31, or the three-peptide combination C10 + C15 + C31 (affording resolutions of 87 and 88%, respectively) provide a good diagnostic, toxin-free procedure for assay of total specific anti-toxin Abs in BoNT/A-treated CD patients.  相似文献   
27.
The regions of botulinum neurotoxin B (BoNT/B) involved in binding to mouse brain synaptosomes (snps) were localized. Sixty 19-residue overlapping peptides (peptide C31 consisted of 24 residues) encompassing BoNT/B H chain (residues 442-1291) were synthesized and used to inhibit binding of (125)I-labeled BoNT/B to snps. Synaptosome-binding regions were noncompeting and existed on both H(N) and H(C) domains of neurotoxin. At 37 °C, inhibitory activities on H(N) resided, in decreasing order, in peptides 638-656 (26.7%), 596-614 (18.2%), 512-530 (13.9%), 778-796 (13.8%), and 526-544 (11.6%). On H(C), activity resided in decreasing order in peptides 1170-1188 (44.6%), 1128-1146 (21.6%), 1184-1202 (18.6%), 1156-1174 (13.0%), 946-964 (11.8%), 1114-1132 (11.2%), 1100-1118 (6.2%), 876-894 (6.1%), 1268-1291 (4.6%), and 1226-1244 (4.3%). The 45 remaining H(N) and H(C) peptides had no activity. At 4 °C, peptide C24 (1170-1188) remained quite active (inhibiting, 31.2%), while activities of peptides N15, C21, and C25 were little under 10%. The snp-binding regions contained sites that bind synaptotagmin II and gangliosides. Despite the low degree of sequence homology, BoNT/B and BoNT/A display significant structural homology and appeared to bind in part to the same snp-binding regions. Binding of each labeled toxin to snps was inhibited ~50% by the other toxin, 70-72% by its correlate H(C), and by the H(C) of the other toxin [29% (BoNT/A by H(C) of B) or 32% (BoNT/B by H(C) of A)]. In the three-dimensional structure of BoNT/B, the greater part of H(C), one H(N) face, and part of the belt on the same side interact with snps. Thus, BoNT/B binds to snps through the H(C) head and employs regions on one H(N) face and the belt, reserving flexibility for the belt's unbound part to release the light chain. Most snp-binding regions coincide or overlap with blocking antibody (Ab)-binding regions explaining how such Abs prevent BoNT/B toxicity.  相似文献   
28.
29.
A comprehensive synthetic approach consisting of a series of consecutive, uniform overlapping peptides encompassing the entire protein chain was recently used to determine the full antigenic profile of the α-chain of human hemoglobin (Hb). The peptides synthesized enabled the localization of five major “continuous” antigenic regions within the α chain. The present findings describe the delineation of an antigenic site (site 2) residing within the region 41–65. Ten peptides representing the α-chain regions 41–55, 51–65, 45–54, 45–56, 45–58, 45–60, 48–56, 49–56, 50–56, and 51–56 were synthesized and purified. Quantitative radioimmunoadsorbent titrations were used to determine binding to peptide adsorbents of radioiodinated anti-Hb antibodies that were raised in rabbit, goat, and outbred mouse. In one set of peptides, the N-terminal was fixed while the C-terminal end was increased by increments of two residues from Gln-54 to Lys-60 (i.e., peptides 45–54, 45–45, 45–58, and 45–60). Binding studies revealed that maximum antibody activity resided in peptide 45–45, indicating that Lys-56 marks the C-terminal boundary of the site. In the second set of peptides, the C-terminal was fixed at Lys-56 while the peptides were elongated at their N-terminal by one-residue increments from Gly-51 to Leu-48. Antibody-binding studies with these peptides indicated that Ser-49 defines the N-terminal boundary of the site. Therefore, the antigenic site within region 41–65 of the α chain comprises residues 49–56. The relevance of these findings to the immune recognition of Hb and other proteins is discussed.  相似文献   
30.
    
The extracellular surface of the-chain ofTorpedo california acetylcholine receptor (AChR) was mapped for regions that are accessible to binding with antibodies against a panel of synthetic overlapping peptides which encompassed the entire extracellular parts of the chain. The binding of the antipeptide antibodies to membrane-bound AChR (mbAChR) and to isolated, soluble AChR. was determined. The specificity of each antiserum was narrowed down by determining the extent of its cross-reaction with the two adjacent peptides that overlap the immunizing peptide. With mbAChR, high antibody reactivity was obtained with antisera against peptides1–16,89–104,158–174,262–276, and388–408. Lower, but significant, levels of reactivity were obtained with antibodies against peptides67–82,78–93,100–115, and111–126. On the other hand, free AChR bound high levels of antibodies against peptides34–49,78–93,134–150,170–186, and194–210. It also bound moderate levels of antibodies against peptides262–276 and388–408. Low, yet significant, levels of binding were exhibited by antibodies against peptides45–60,111–126, and122–138. These binding studies, which enabled a comparison of the accessible regions in mbAChR and free AChR, revealed that the receptor undergoes considerable changes in conformation upon removal from the cell membrane. The exposed regions found here are discussed in relation to the functional sites of AChR (i.e., the acetylcholine binding site, the regions that are recognized by anti-AChR antibodies, T-cells and autoimmune responses and the regions that bind short and long neurotoxins).Abbreviations used AChR acetylcholine receptor - mbAChR membrane-bound AChR - BSA bovine serum albumin - BTX -bungarotoxin - EAMG experimental autoimmune myasthenia gravis - MG myasthenia gravis - PBS 0.15 MNaCl in 0.01 M sodium phosphate buffer, pH 7.2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号