首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   0篇
  47篇
  2022年   1篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   3篇
  2014年   4篇
  2013年   5篇
  2012年   4篇
  2011年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
  1987年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
31.
It is known that the mechanisms of brain damage after a stroke are regulated by interaction within several cell types, primarily neurons, astrocytes, the endothelium, and microglia. Ischemic exposure disrupts the balance in the brain cellular content; thus, in the lesion, cells die by necrosis, while delayed induction of apoptosis occurs in the tissue surrounding the ischemic zone. Named cells die in the lesion and their ratio determines the clinical outcome of the disease. Thus, the detection of deaths within various cell types of the neurovascular unit is an important part of fundamental studies of the mechanisms of brain damage and preclinical studies of potential neuroprotective drugs. For this reason, we conducted a comparative study of the two most often used methods: immunohistochemical staining of brain sections, which allows to determine the number and localization of specific cells in the tissue among other types of cells, and immunoblotting, which detects specific proteins in the tissue homogenate. We found that, depending on the cell type, changes in their number and composition after a stroke can be localized in a limited part of the tissue or cover the entire hemisphere, which imposes restrictions on the use of any method of determining the number of cells in brain tissue. In general, the most preferable is the use of immunohistochemistry; however, with certain limitations, immunoblotting can be used to determine the proportion of astroglia and microglia.  相似文献   
32.
Higher plant plasma membranes carry receptors of different affinity for the phytotoxin fusicoccin. Reception of fusicoccin involves proteins belonging to the highly conserved 14-3-3 family, but the complete structure of the fusicoccin receptor (FCR) is unknown. Using radiation inactivation analysis, we estimated the molecular masses of low-affinity and high-affinity FCR at 63 +/- 7 and 130 +/- 15 kD, respectively. The dose dependences of receptor inactivation indicate that microsomal specimens contain "silent" FCRs of 420 +/- 90 kD in amounts commensurate with that of the active FCRs. Both low- and high-affinity FCRs are inactivated by hydrolytic enzymes from the outer surface of the plasma membrane, and impairment of protoplast integrity causes an irreversible transition of the low-affinity binding site into the high-affinity one. A scheme is proposed for the organization of different types of FCR in the plasma membrane, implying that the membrane affinity for fusicoccin reflects the interaction between proteins in the FCR complex.  相似文献   
33.
The anti-aging strategy is one of the main challenges of the modern biomedical science. The term “aging” covers organisms, cells, cellular organelles and their constituents. In general term, aging system admits the existence of nonfunctional structures which by some reasons have not been removed by a clearing system, e.g., through autophagy/mitophagy marking and destroying unwanted cells or mitochondria. This directly relates to the old kidney which normal functioning is critical for the viability of the organism. One of the main problems in biomedical studies is that in their majority, young organisms serve as a standard with further extrapolation on the aged system. However, some protective systems, which demonstrate their efficiency in young systems, lose their beneficial effect in aged organisms. It is true for ischemic preconditioning of the kidney, which is almost useless for an old kidney. The pharmacological intervention could correct the defects of the senile system provided that the complete understanding of all elements involved in aging will be achieved. We discuss critical elements which determine the difference between young and old phenotypes and give directions to prevent or cure lesions occurring in aged organs including kidney.

Abbreviations: AKI: acute kidney injury; I/R: ischemia/reperfusion; CR: caloric restriction; ROS: reactive oxygen species; RC: respiratory chain  相似文献   

34.
Nanotechnology in Therapeutics: Current Technology and Applications, Edited by Nicholas A. Peppas, J. Zach Hilt and J. Brock Thomas (Horizon Bioscience, 2007) contains seventeen chapters written by leading specialists in the field of polymeric materials for drug delivery and holds wealth of background as well as state of the art material divided into four sections: "Intelligent Therapeutics and Responsive Delivery Systems for Improved Absorption and Delivery", "Therapeutic Micro- and Nanodevices", "Nanostructured Therapeutic Materials" and "Nanoparticulate Systems in Intelligent Therapy". This newly published volume provides a stimulating read and a good point of reference to researchers wishing to explore the interdisciplinary fusion of nnanotechnology and medical therapeutics. The following gives brief summary and critically reviews the book.  相似文献   
35.
The role of adipokinetic hormone (AKH) in counteracting oxidative stress elicited in the insect body is studied in response to exogenously applied hydrogen peroxide, an important metabolite of oxidative processes. In vivo experiments reveal that the injection of hydrogen peroxide (8 µmol) into the haemocoel of the firebug, Pyrrhocoris apterus L. (Heteroptera: Pyrrhocoridae) increases the level of AKH by 2.8‐fold in the central nervous system (CNS) and by 3.8‐fold in the haemolymph. The injection of hydrogen peroxide also increases the mortality of experimental insects, whereas co‐injection of hydrogen peroxide with Pyrap‐AKH (40 pmol) reduces mortality to almost control levels. Importantly, an increase in haemolymph protein carbonyl levels (i.e. an oxidative stress biomarker) elicited by hydrogen peroxide is decreased by 3.6‐fold to control levels when hydrogen peroxide is co‐injected with Pyrap‐AKH. Similar results are obtained using in vitro experiments. Oxidative stress biomarkers such as malondialdehyde and protein carbonyls are significantly enhanced upon exposure of the isolated CNS to hydrogen peroxide in vitro, whereas co‐treatment of the CNS with hydrogen peroxide and Pyrap‐AKH reduces levels significantly. Moreover, a marked decrease in catalase activity compared with controls is recorded when the CNS is incubated with hydrogen peroxide. Incubation of the CNS with hydrogen peroxide and Pyrap‐AKH together curbs the negative effect on catalase activity. Taken together, the results of the present study provide strong support for the recently published data on the feedback regulation between oxidative stressors and AKH action, and implicate AKH in counteracting oxidative stress. The in vitro experiments should facilitate research on the mode of action of AKH in relation to oxidative stress, and could help clarify the key pathways involved in this process.  相似文献   
36.

Background

Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular compartments. Besides direct antioxidative activity, these compounds are believed to activate numerous protective pathways. Endogenous anti-ischemic defense may involve the very powerful neuroprotective agent erythropoietin, which is mainly produced by the kidney in a redox-dependent manner, indicating an important role of the kidney in regulation of brain ischemic damage. The goal of this study is to track the relations between the kidney and the brain in terms of the amplification of defense mechanisms during SkQR1 treatment and remote renal preconditioning and provide evidence that the kidney can generate signals inducing a tolerance to oxidative stress-associated brain pathologies.

Methodology/Principal Findings

We used the cationic plastoquinone derivative, SkQR1, as a mitochondria-targeted antioxidant to alleviate the deleterious consequences of stroke. A single injection of SkQR1 before cerebral ischemia in a dose-dependent manner reduces infarction and improves functional recovery. Concomitantly, an increase in the levels of erythropoietin in urine and phosphorylated glycogen synthase kinase-3β (GSK-3β) in the brain was detected 24 h after SkQR1 injection. However, protective effects of SkQR1 were not observed in rats with bilateral nephrectomy and in those treated with the nephrotoxic antibiotic gentamicin, indicating the protective role of humoral factor(s) which are released from functional kidneys. Renal preconditioning also induced brain protection in rats accompanied by an increased erythropoietin level in urine and kidney tissue and P-GSK-3β in brain. Co-cultivation of SkQR1-treated kidney cells with cortical neurons resulted in enchanced phosphorylation of GSK-3β in neuronal cells.

Conclusion

The results indicate that renal preconditioning and SkQR1-induced brain protection may be mediated through the release of EPO from the kidney.  相似文献   
37.
This review explores the alternative functions of mitochondria inside the cell. In a general picture of mitochondrial functioning, the importance and uniqueness of these intrinsic functions make them irreplaceable by other intracellular compartments. Among these are, participation in apoptosis and cellular proliferation, regulation of the cellular redox state and level of second messengers, heme and steroid syntheses, production and transmission of a transmembrane potential, detoxication and heat production. In most of the listed functions, reactive oxygen species modulate a number of non-destructive cellular activities. Some of the mitochondrial functions are reviewed in detail.  相似文献   
38.
Programmed execution of various cells and intracellular structures is hypothesized to be not the only example of elimination of biological systems — the general mechanism can also involve programmed execution of organs and organisms. Modern rating of programmed cell death mechanisms includes 13 mechanistic types. As for some types, the mechanism of actuation and manifestation of cell execution has been basically elucidated, while the causes and intermediate steps of the process of fatal failure of organs and organisms remain unknown. The analysis of deaths resulting from a sudden heart arrest or multiple organ failure and other acute and chronic pathologies leads to the conclusion of a special role of mitochondria and oxidative stress activating the immune system. Possible mechanisms of mitochondria-mediated induction of the signaling cascades involved in organ failure and death of the organism are discussed. These mechanisms include generation of reactive oxygen species and damage-associated molecular patterns in mitochondria. Some examples of renal failure-induced deaths are presented with mechanisms and settings determined by some hypothetical super system rather than by the kidneys themselves. This system plays the key role in the process of physiological senescence and termination of an organism. The facts presented suggest that it is the immune system involved in mitochondrial signaling that can act as the system responsible for the organism’s death.  相似文献   
39.
The fast- and slow-twitch muscles were tested with single pulses in the course of unfused tetanus formation. The tetanus decreased differences in contractile parameters of the test-twitch contractions and, after continuous stimulation, eliminated them altogether.  相似文献   
40.
The mechanism of Bax-dependent cytochrome c release is still controversial and may also depend on the actual localisation of cytochrome C: (i) we studied the distribution of cytochrome c in sub-fractions of rat kidney mitochondria and found that 10-20% of the total cytochrome c was associated at the peripheral inner membrane and to some extent organised in the contact sites. (ii) Cytochrome c concentrations in the contact site fractions varied related to surface bound hexokinase activity. It decreased upon reduction of contact sites by glycerol or specific dissociation of the VDAC-ANT complexes by bongkrekate, whereas it increased upon induction of contacts by dextran or association of VDAC-ANT complexes by atractyloside. (iii) The outer membrane pore (VDAC) acquires high capacity for hexokinase binding by interacting with the ANT. Thus, surface-attached hexokinase protein indicated the frequency of VDAC-ANT complexes and the correlation between hexokinase activity and cytochrome c suggested association of the latter to the complexes. (iv) Substances affecting exclusively the structure of either hexokinase (glucose-6P) or cytochrome c (borate) led to a decrease only of the effected protein without changing the concentration of other contact site constituents. (v) Hexokinase was furthermore used as a tool to isolate the contact site forming complex of outer membrane VDAC and inner membrane ANT from Triton-dissolved membranes. Cytochrome c remained attached to the hexokinase VDAC-ANT complexes that were reconstituted in phospholipid vesicles. (vi) The vesicles were loaded with malate and BaxDeltaC released the endogenous cytochrome c from the reconstituted complexes without forming unspecific pores for malate. BaxDeltaC targeted a cytochrome c fraction associated at the VDAC-ANT complex. The cytochrome c organisation was dependent on the actual structure of VDAC and ANT. Thus, the BaxDeltaC effect was suppressed either by hexokinase utilising glucose and ATP or by bongkrekic acid both influencing the pore and ANT structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号