首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   6篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   6篇
  2009年   4篇
  2008年   3篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   4篇
  1999年   5篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
排序方式: 共有75条查询结果,搜索用时 31 毫秒
61.
62.
Bacteria subjected to a hypotonic osmotic shock lose internal ions and also metabolites, without lysis of the cells. We show that the presence in the shock medium, at submillimolar concentrations, of the ion gadolinium, recently shown to block stretch-activated channels in Xenopus oocytes [Yang, X.-C. & Sachs, F. (1989) Science 243, 1068-1071], was sufficient to inhibit shock-induced release of metabolites such as lactose and ATP in Escherichia coli and ATP in Streptococcus faecalis. Moreover, gadolinium was observed, in patch-clamp experiments, to inhibit the giant stretch-activated channels of E. coli, S. faecalis. and Bacillus subtilis. Taken together, these data suggest that stretch-activated channels are localized in the cytoplasmic membrane of Gram-negative and Gram-positive bacteria, where they control the efflux of osmotic solutes, thus probably playing a major role in the response to hypotonic osmotic shock.  相似文献   
63.
The delta Gp/delta mu H ratio has been measured in mitochondria close to state 4 in the presence of various uncoupler or K+/valinomycin concentrations in media containing either 1 mM or 50 mM Pi. Care has been taken to control the factors affecting delta Gp and delta mu H which could lead to an artefactual increase of the delta Gp/delta mu H ratio above the highest accepted value for the H+/ATP stoichiometry (n = 4, synthesis + transport). In particular, to avoid overestimation of delta Gp due to inactivation of the ATPases at low delta mu H or to the presence of adenylate kinase, the static head state was approached from the side of net ATP synthesis and delta Gp was measured in a state close to static head but still maintaining a residual rate of aerobic phosphorylation. For each concentration of uncoupler or K+, the Pi concentration and/or the adenylate energy charge (EC) as a function of time have been measured as indicators of net ATP synthesis. Only the values of delta Gp measured during a decrease in Pi concentration and/or an increase in EC have been considered to be meaningful for calculations of delta Gp/delta mu H ratios. Both uncouplers and K+ transport cause a marked depression of delta mu H and a parallel depression of the rate of ATP synthesis. However the low rate of ATP synthesis taking place under conditions of low delta mu H eventually results, especially at high Pi concentrations, in a relatively large delta Gp. The delta Gp/delta mu H ratios obtained at the lower delta mu H values exceed 4 and approach 6. Although slightly higher delta Gp/delta mu H ratios are obtained with valinomycin-treated than with uncoupler-treated mitochondria, the pattern of the rise of the force ratio as delta mu H decreases is similar in both cases. An increase of the delta Gp/delta mu H ratio above 4, the maximal accepted H+/ATP stoichiometry is thermodynamically incompatible with the delocalized protonic coupling model.  相似文献   
64.
In patch-clamp experiments on rat liver mitoplasts, cyclosporin A inhibited the activity of the recently described (Petronilli, V., Szabó, I., and Zoratti, M. (1989) FEBS Lett. 259, 137-143) 1.3-nanosiemens channel of the inner mitochondrial membrane at concentrations in the 10(-8)-10(-7) M range. The inhibitor acts when present on the matrix side of membrane. The Ca2(+)-dependent "permeability transition channel" of mitochondria is inhibited by cyclosporin A in the same concentration range. The results suggest therefore that the same pore is responsible for the permeabilization of the inner mitochondrial membrane and for the conduction of the high currents observed in electrophysiological experiments.  相似文献   
65.
Cystic fibrosis (CF) is caused by defects of the CF transmembrane conductance regulator (CFTR), which acts both as an anion-selective channel and as a regulator of other proteins. The relative contribution of these two functions in CF disease is debated. The toxin VacA forms channels with properties similar to those of the CFTR, and we report here that it can insert into the membrane of various cells originating from respiratory epithelia, generating a chloride conductance comparable to that produced by activation of the CFTR. VacA may therefore become a valuable tool in the study of CF pathogenesis.  相似文献   
66.
This paper explores the relationship between Bax and the mitochondrial permeability transition pore (PTP). Isolated human colon tumor (HCT116) Bax- mitochondria exposed to recombinant Bax exhibited a slow, cyclosporin A-sensitive swelling, but only at [Bax]>200 nM. The amount of Bax incorporated was much higher than that found in organelles isolated from HCT116 Bax+ staurosporine- or etoposide-treated apoptotic cells, casting doubts on the significance of the putative PT induction for apoptosis. Bax did not influence the electrophysiological properties of an approximately 1 nS channel ascribed to the Ca2+-dependent mitochondrial permeability transition pore. These observations indicate that the PTP is independent of Bax.  相似文献   
67.
A novel potassium channel in lymphocyte mitochondria   总被引:4,自引:0,他引:4  
The margatoxin-sensitive Kv1.3 is the major potassium channel in the plasma membrane of T lymphocytes. Electron microscopy, patch clamp, and immunological studies identified the potassium channel Kv1.3, thought to be localized exclusively in the cell membrane, in the inner mitochondrial membrane of T lymphocytes. Patch clamp of mitoplasts and mitochondrial membrane potential measurements disclose the functional expression of a mitochondrial margatoxin-sensitive potassium channel. To identify unambiguously the mitochondrial localization of Kv1.3, we employed a genetic model and stably transfected CTLL-2 cells, which are genetically deficient for this channel, with Kv1.3. Mitochondria isolated from Kv1.3-reconstituted CTLL-2 expressed the channel protein and displayed an activity, which was identical to that observed in Jurkat mitochondria, whereas mitochondria of mock-transfected cells lacked a channel with the characteristics of Kv1.3. Our data provide the first molecular identification of a mitochondrial potassium conductance.  相似文献   
68.
We recently reported that mitochondria-targeted derivatives of resveratrol are cytotoxic in vitro, selectively inducing mostly necrotic death of fast-growing and tumoral cells when supplied in the low μM range (N. Sassi et al., Curr. Pharm. Des. 2014). Cytotoxicity is due to H2O2 produced upon accumulation of the compounds into mitochondria. We investigate here the mechanisms underlying ROS generation and mitochondrial depolarization caused by these agents. We find that they interact with the respiratory chain, especially complexes I and III, causing superoxide production. “Capping” free hydroxyls with acetyl or methyl groups increases their effectiveness as respiratory chain inhibitors, promoters of ROS generation and cytotoxic agents. Exposure to the compounds also induces an increase in the occurrence of short transient [Ca2 +] “spikes” in the cells. This increase is unrelated to ROS production, and it is not the cause of cell death. These molecules furthermore inhibit the F0F1 ATPase. When added to oligomycin-treated cells, the acetylated/methylated ones cause a recovery of the cellular oxygen consumption rates depressed by oligomycin. Since a protonophoric futile cycle which might account for the uncoupling effect is impossible, we speculate that the compounds may cause the transformation of the ATP synthase and/or respiratory chain complex(es) into a conduit for uncoupled proton translocation. Only in the presence of excess oligomycin the most effective derivatives appear to induce the mitochondrial permeability transition (MPT) within the cells. This may be considered to provide circumstantial support for the idea that the ATP synthase is the molecular substrate for the MPT pore.  相似文献   
69.
Patch–clamping mitoplasts isolated from human colon carcinoma 116 cells has allowed the identification and characterization of the intermediate conductance Ca2+-activated K+-selective channel KCa3.1, previously studied only in the plasma membrane of various cell types. Its identity has been established by its biophysical and pharmacological properties. Its localisation in the inner membrane of mitochondria is indicated by Western blots of subcellular fractions, by recording of its activity in mitochondria made fluorescent by a mitochondria-targeted fluorescent protein and by the co-presence of channels considered to be markers of the inner membrane. Moderate increases of mitochondrial matrix [Ca2+] will cause mtKCa3.1 opening, thus linking inner membrane K+ permeability and transmembrane potential to Ca2+ signalling.  相似文献   
70.
The inner mitochondrial membrane is famously impermeable to solutes not provided with a specific carrier. When this impermeability is lost, either in a developmental context or under stress, the consequences for the cell can be far-reaching. Permeabilization of isolated mitochondria, studied since the early days of the field, is often discussed as if it were a biochemically well-defined phenomenon, occurring by a unique mechanism. On the contrary, evidence has been accumulating that it may be the common outcome of several distinct processes, involving different proteins or protein complexes, depending on circumstances. A clear definition of this putative variety is a prerequisite for an understanding of mitochondrial permeabilization within cells, of its roles in the life of organisms, and of the possibilities for pharmacological intervention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号