首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79395篇
  免费   3947篇
  国内免费   4393篇
  87735篇
  2024年   673篇
  2023年   1193篇
  2022年   2448篇
  2021年   4122篇
  2020年   2801篇
  2019年   3349篇
  2018年   3174篇
  2017年   2335篇
  2016年   3279篇
  2015年   4811篇
  2014年   5548篇
  2013年   5988篇
  2012年   7023篇
  2011年   6157篇
  2010年   3712篇
  2009年   3334篇
  2008年   3722篇
  2007年   3354篇
  2006年   2907篇
  2005年   2380篇
  2004年   1957篇
  2003年   1654篇
  2002年   1399篇
  2001年   1230篇
  2000年   1218篇
  1999年   1120篇
  1998年   661篇
  1997年   655篇
  1996年   665篇
  1995年   616篇
  1994年   545篇
  1993年   376篇
  1992年   568篇
  1991年   435篇
  1990年   406篇
  1989年   282篇
  1988年   244篇
  1987年   234篇
  1986年   166篇
  1985年   192篇
  1984年   109篇
  1983年   117篇
  1982年   71篇
  1981年   58篇
  1980年   37篇
  1979年   61篇
  1977年   30篇
  1974年   38篇
  1973年   34篇
  1972年   30篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
992.
Signaling through mammalian target of rapamycin complex 1 (mTORC1) is stimulated by amino acids and insulin. Insulin inactivates TSC1/2, the GTPase-activator complex for Rheb, and Rheb.GTP activates mTORC1. It is not clear how amino acids regulate mTORC1. FKBP38 (immunophilin FK506-binding protein, 38 kDa), was recently reported to exert a negative effect on mTORC1 function that is relieved by its binding to Rheb.GTP. We confirm that Rheb binds wild type FKBP38, but inactive Rheb mutants showed contrasting abilities to bind FKBP38. We were unable to observe any regulation of FKBP38/mTOR binding by amino acids or insulin. Furthermore, FKBP38 did not inhibit mTORC1 signaling. The translationally controlled tumor protein (TCTP) in Drosophila was recently reported to act as the guanine nucleotide-exchange factor for Rheb. We have studied the role of TCTP in mammalian TORC1 signaling and its control by amino acids. Reducing TCTP levels did not reproducibly affect mTORC1 signaling in amino acid-replete/insulin-stimulated cells. Moreover, overexpressing TCTP did not rescue mTORC1 signaling in amino acid-starved cells. In addition, we were unable to see any stable interaction between TCTP and Rheb or mTORC1. Accumulation of uncharged tRNA has been previously proposed to be involved in the inhibition of mTORC1 signaling during amino acid starvation. To test this hypothesis, we used a Chinese hamster ovary cell line containing a temperature-sensitive mutation in leucyl-tRNA synthetase. Leucine deprivation markedly inhibited mTORC1 signaling in these cells, but shifting the cells to the nonpermissive temperature for the synthetase did not. These data indicate that uncharged tRNA(Leu) does not switch off mTORC1 signaling and suggest that mTORC1 is controlled by a distinct pathway that senses the availability of amino acids. Our data also indicate that, in the mammalian cell lines tested here, neither TCTP nor FKBP38 regulates mTORC1 signaling.  相似文献   
993.
994.
995.
996.
To gain insight into the conformational conversion of ovine prion protein (OvPrP(C)) at different pH values and/or in the presence of CuCl(2), the secondary structure of OvPrP(C) was analysed by circular dichroism (CD) spectroscopy. Copper treatment of OvPrP(C) under moderately acidic conditions (pH approximately 5.0-6.0) as well as physiological conditions (pH 7.4) also makes OvPrP(C) adopt protease-resistant and beta-sheet-rich conformation. However, under lower pH conditions (2.0-4.5) with copper treatment, OvPrP(C) gained higher alpha-helix structure. This study demonstrated that Cu(2+) can significantly modulate conformational conversion triggered by acidic pH, and this will provide therapeutic intervention approaches for prion diseases.  相似文献   
997.
ADP-ribosylation factors (Arfs) are highly conserved small GTPases and are critical components of vesicle trafficking. Yeast Arf3p, despite its similarity to mammalian Arf6, is not required for endocytosis but is involved in polarity development. In this study, we identified an Arf3p interacting protein 1 (Afi1p), which, through its N-terminal conserved region, specifically interacts with GTP-bound Arf3p. Afi1p is distributed asymmetrically at the plasma membrane and is required for polarized distribution of Arf3p but not of an Arf3p guanine nucleotide-exchange factor, Yel1p. However, Afi1p is not required for targeting of Arf3p or Yel1p to the plasma membrane. Like arf3 mutant yeast, afi1 mutant yeast exhibited an abnormal budding pattern and partially delayed actin patch polarization. An Afi1p, (38)KLGP4A-Afi1p, mutated at the Arf3p-binding region, loses its ability to interact with Arf3p and maintain the polarized distribution of Arf3p. Although (38)KLGP4A-Afi1p still possessed a proper polarized distribution, it lost its ability to rescue actin patch polarization in afi1 mutant cells. Our findings demonstrate that Afi1p functions as an Arf3p polarization-specific adapter and participates in development of polarity.  相似文献   
998.
Through its interactions with proteins and proteoglycans, thrombospondin-1 (TSP-1) functions at the interface of the cell membrane and the extracellular matrix to regulate matrix structure and cellular phenotype. We have previously determined the structure of the high affinity heparin-binding domain of TSP-1, designated TSPN-1, in association with the synthetic heparin, Arixtra. To establish that the binding of TSPN-1 to Arixtra is representative of the association with naturally occurring heparins, we have determined the structures of TSPN-1 in complex with heparin oligosaccharides containing eight (dp8) and ten (dp10) subunits, by x-ray crystallography. We have found that dp8 and dp10 bind to TSPN-1 in a manner similar to Arixtra and that dp8 and dp10 induce the formation of trans and cis TSPN-1 dimers, respectively. In silico docking calculations partnered with our crystal structures support the importance of arginine residues in positions 29, 42, and 77 in binding sulfate groups of the dp8 and dp10 forms of heparin. The ability of several TSPN-1 domains to bind to glycosaminoglycans simultaneously probably increases the affinity of binding through multivalent interactions. The formation of cis and trans dimers of the TSPN-1 domain with relatively short segments of heparin further enhances the ability of TSP-1 to participate in high affinity binding to glycosaminoglycans. Dimer formation may also involve TSPN-1 domains from two separate TSP-1 molecules. This association would enable glycosaminoglycans to cluster TSP-1.  相似文献   
999.
1000.
Tian Y  Xu M  Fu Y  Yuan A  Wang D  Li G  Liu G  Lu L 《Biochemical genetics》2008,46(9-10):677-684
N-myc downstream-regulated genes 1 and 3 (NDRG1 and NDRG3) are members of the alpha/beta hydrolase superfamily. Phylogenetic analysis of the family demonstrated that human NDRG1 and 3 belong to a subfamily. The mapping and gene expression patterns of these genes represent one step toward further investigation into their possible roles in the chicken (Gallus gallus). To map these genes in the chicken chromosome, a 6000 rads chicken-hamster radiation hybrid panel (ChickRH6) was used. Primers were designed according to the published human sequences for amplification of those two genes. We compared the corresponding human mRNA sequences with the predicted coding sequences of the chicken NDRG1 and 3 genes and found that the assembled contigs shared a high percentage of similarity with the human genes. PCR of samples from ChickRH6 revealed that the locations of NDRG1 and 3 are linked to the markers MYC (58 cRs away, LOD score 4.52) and SEQ0265 (10 cRs away, LOD score 17.81), respectively. This result adds two new markers to the chicken RH map, and it reinforces that the RH technique is indeed a powerful tool for mapping genes due to its rapidity, precision, convenience, and reproducibility. In addition, we detected the gene expression and distribution of chicken NDRG1 and 3 in seven tissues, including heart, liver, spleen, lung, muscle, brain, and thymus, by RT-PCR, and found that NDRG1 is relatively ubiquitously expressed in all the tested tissues and highly expressed in heart and liver, whereas NDRG3 is high in heart, muscle, and brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号