首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   8篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2015年   4篇
  2014年   8篇
  2013年   6篇
  2012年   7篇
  2010年   4篇
  2009年   9篇
  2008年   3篇
  2007年   6篇
  2006年   2篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1977年   1篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1967年   1篇
  1965年   1篇
排序方式: 共有108条查询结果,搜索用时 31 毫秒
51.
Using photo‐identification data, bottlenose dolphin (Tursiops truncatus) populations can be differentiated based on their use of particular estuaries or coastal habitats. Questions remain, however, about the validity of such fine‐scale population partitioning and whether the resulting assemblages utilize unique forage bases. To address the issue of forage base use, stable isotopes of carbon (δ13C), nitrogen (δ15N) and sulfur (δ34S) were analyzed from skin tissues (n= 74) of bottlenose dolphins sampled seasonally along the coast and in three estuaries near Charleston, South Carolina. Autumn values of δ34S, δ15N, and δ13C and summer values of δ34S indicated that dolphins sampled from these four assemblages utilized unique forage bases, despite limited sample sizes. Likewise, autumn and spring differences in δ15N and δ13C values were evident in the North Edisto River, and in δ34S from dolphins sampled from all three estuarine assemblages; no seasonal differences were identified in the coastal assemblage. Results demonstrate the importance of considering spatial and temporal variation in forage base when developing local management plans for bottlenose dolphin and highlight the discriminatory power of δ34S for estuarine and coastal marine mammals. These results also suggest that stable isotopes could be developed as a complementary tool for photo‐identification based partitioning of bottlenose dolphin populations.  相似文献   
52.
Fifty-two strains from eight species of Fusarium were analyzed by rapid rRNA sequencing. Two highly variable stretches (138 and 214 nucleotides) of the 5' end of the 28S-like rRNA molecule were sequenced. Such stretches permit evaluation of the divergence between closely related species and even between varieties within a species. The phylogenetic tree computed from the number of nucleotide differences shows seven Fusarium species to be more closely related to one another than the eighth species, F. nivale, is to them. On the basis of these data, we discuss both the phylogenetic value of taxonomical criteria and the impact of our findings on the demarcation of the genus Fusarium. We conclude that this method is suitable for establishing a precise phylogeny between closely related species within a genus.   相似文献   
53.
54.

Background  

Hepatitis C virus (HCV) currently infects approximately three percent of the world population. In view of the lack of vaccines against HCV, there is an urgent need for an efficient treatment of the disease by an effective antiviral drug. Rational drug design has not been the primary way for discovering major therapeutics. Nevertheless, there are reports of success in the development of inhibitor using a structure-based approach. One of the possible targets for drug development against HCV is the NS3 protease variants. Based on the three-dimensional structure of these variants we expect to identify new NS3 protease inhibitors. In order to speed up the modeling process all NS3 protease variant models were generated in a Beowulf cluster. The potential of the structural bioinformatics for development of new antiviral drugs is discussed.  相似文献   
55.
In our studies of the health effects of internalized depleted uranium, we developed a simple and rapid light microscopic method to stain specifically intracellular uranium deposits. Using J774 cells, a mouse macrophage line, treated with uranyl nitrate and the pyridylazo dye 2-(5-bromo-2- pyridylazo)-5-diethylaminophenol, uranium uptake by the cells was followed. Specificity of the stain for uranium was accomplished by using masking agents to prevent the interaction of the stain with other metals. Prestaining wash consisting of a mixture of sodium citrate and ethylenediaminetetraacetic acid eliminated staining of metals other than uranium. The staining solution consisted of the pyridylazo dye in borate buffer along with a quaternary ammonium salt, ethylhexadecyldimethylammonium bromide, and the aforementioned sodium citrate/ethylene-diaminetetraacetic acid mixture. The buffer was essential for maintaining the pH within the optimum range of 8 to 12, and the quaternary ammonium salt prevented precipitation of the dye. Staining was conducted at room temperature and was complete in 30 min. Staining intensity correlated with both uranyl nitrate concentration and incubation time. Our method provides a simple procedure for detecting intracellular uranium deposits in macrophages.  相似文献   
56.
57.
The Arabidopsis chy1 mutant is resistant to indole-3-butyric acid, a naturally occurring form of the plant hormone auxin. Because the mutant also has defects in peroxisomal beta-oxidation, this resistance presumably results from a reduced conversion of indole-3-butyric acid to indole-3-acetic acid. We have cloned CHY1, which appears to encode a peroxisomal protein 43% identical to a mammalian valine catabolic enzyme that hydrolyzes beta-hydroxyisobutyryl-CoA. We demonstrated that a human beta-hydroxyisobutyryl-CoA hydrolase functionally complements chy1 when redirected from the mitochondria to the peroxisomes. We expressed CHY1 as a glutathione S-transferase (GST) fusion protein and demonstrated that purified GST-CHY1 hydrolyzes beta-hydroxyisobutyryl-CoA. Mutagenesis studies showed that a glutamate that is catalytically essential in homologous enoyl-CoA hydratases was also essential in CHY1. Mutating a residue that is differentially conserved between hydrolases and hydratases established that this position is relevant to the catalytic distinction between the enzyme classes. It is likely that CHY1 acts in peroxisomal valine catabolism and that accumulation of a toxic intermediate, methacrylyl-CoA, causes the altered beta-oxidation phenotypes of the chy1 mutant. Our results support the hypothesis that the energy-intensive sequence unique to valine catabolism, where an intermediate CoA ester is hydrolyzed and a new CoA ester is formed two steps later, avoids methacrylyl-CoA accumulation.  相似文献   
58.
Zolman BK  Yoder A  Bartel B 《Genetics》2000,156(3):1323-1337
Indole-3-butyric acid (IBA) is widely used in agriculture because it induces rooting. To better understand the in vivo role of this endogenous auxin, we have identified 14 Arabidopsis mutants that are resistant to the inhibitory effects of IBA on root elongation, but that remain sensitive to the more abundant auxin indole-3-acetic acid (IAA). These mutants have defects in various IBA-mediated responses, which allowed us to group them into four phenotypic classes. Developmental defects in the absence of exogenous sucrose suggest that some of these mutants are impaired in peroxisomal fatty acid chain shortening, implying that the conversion of IBA to IAA is also disrupted. Other mutants appear to have normal peroxisomal function; some of these may be defective in IBA transport, signaling, or response. Recombination mapping indicates that these mutants represent at least nine novel loci in Arabidopsis. The gene defective in one of the mutants was identified using a positional approach and encodes PEX5, which acts in the import of most peroxisomal matrix proteins. These results indicate that in Arabidopsis thaliana, IBA acts, at least in part, via its conversion to IAA.  相似文献   
59.
60.
The N-glycosylation sites of human Tamm-Horsfall glycoprotein from one healthy male donor have been characterized, based on an approach using endoproteinase Glu-C (V-8 protease, Staphylococcus aureus ) digestion and a combination of chromatographic techniques, automated Edman sequencing, and fast atom bombardment mass spectrometry. Seven out of the eight potential N-glycosylation sites, namely, Asn52, Asn56, Asn208, Asn251, Asn298, Asn372, and Asn489, turned out to be glycosylated, and the potential glycosylation site at Asn14, being close to the N-terminus, is not used. The carbohydrate microheterogeneity on three of the glycosylation sites was studied in more detail by high-pH anion-exchange chromatographic profiling and 500 MHz1H-NMR spectroscopy. Glycosylation site Asn489 contains mainly di- and tri-charged oligosaccharides which comprise, among others, the GalNAc4 S (beta1-4)GlcNAc terminal sequence. Only glycosylation site Asn251 bears oligomannose-type carbohydrate chains ranging from Man5GlcNAc2to Man8GlcNAc2, in addition to a small amount of complex- type structures. Profiling of the carbohydrate moieties of Asn208 indicates a large heterogeneity, similar to that established for native human Tamm-Horsfall glycoprotein, namely, multiply charged complex-type carbohydrate structures, terminated by sulfate groups, sialic acid residues, and/or the Sda-determinant.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号