首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   437篇
  免费   29篇
  国内免费   1篇
  2023年   4篇
  2022年   18篇
  2021年   16篇
  2020年   27篇
  2019年   50篇
  2018年   28篇
  2017年   17篇
  2016年   26篇
  2015年   24篇
  2014年   28篇
  2013年   30篇
  2012年   39篇
  2011年   27篇
  2010年   20篇
  2009年   14篇
  2008年   9篇
  2007年   16篇
  2006年   6篇
  2005年   5篇
  2004年   5篇
  2003年   4篇
  2002年   6篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   5篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   8篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有467条查询结果,搜索用时 295 毫秒
21.
Despite many advances and optimization in colon cancer treatment, tumor recurrence and metastases make the development of new therapies necessary. Colon cancer stem cells (CCSCs) are considered as the main triggering factor of cancer progression, recurrence, and metastasis. CCSCs as a result of accumulated genetic and epigenetic alterations and also complex interconnection with the tumor microenvironment (TME) can evolve and convert to full malignant cells. Mounting evidence suggests that in cancer therapy both CCSCs and non-CCSCs in TME have to be regarded to break through the limitation of current therapies. In this regard, stem cell capabilities of some non-CCSCs may arise inside the TME condition. Therefore, a deep knowledge of regulatory mechanisms, heterogeneity, specific markers, and signaling pathways of CCSCs and their interconnection with TME components is needed to improve the treatment of colorectal cancer and the patient's life quality. In this review, we address current different targeted therapeutic options that target cell surface markers and signaling pathways of CCSCs and other components of TME. Current challenges and future perspectives of colon cancer personalized therapy are also provided here. Taken together, based on the deep understanding of biology of CCSCs and using three-dimensional culture technologies, it can be possible to reach successful colon cancer eradication and improvise combination targeted therapies against CCSCs and TME.  相似文献   
22.
Insect midgut proteases are excellent targets for insecticidal agents such as protease inhibitors. These inhibitors are used for producing transgenic plants, resistant to pests. For achieving this goal, it is necessary to find the nature of specific proteases and their properties for adopting possible pest management procedure. Therefore, characterisation of the enzymes in the gut of the rose sawfly, Arge rosae (Hymenoptera: Argidae), responsible for proteolysis, was performed using a range of synthetic substrates and specific inhibitors. The optimum conditions for general proteases and trypsin were achieved at pH 10. The highest activity for general proteases was obtained at a temperature of 45°C. The use of specific inhibitors and SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) provided evidence to suggest that most of the proteases belonged to the serine group because of high inhibitory effect of phenyl methane sulfonyl fluoride on total proteolytic activity. Also, inhibition assays and zymogram analysis showed that metalloproteases are present in A. rosae digestive system. These results indicated that A. rosae larvae mainly used serine proteases for protein digestion, with chymotrypsin as the dominant form. The kinetic parameters of trypsin-like proteases using N-benzoyl-dl-arg-p-nitroanilide as substrate indicated that the K m and V max values of trypsin in the gut of the fifth instar larvae were 730 ± 17.3 μM and 456 ± 13.85 nmol min?1 mg?1 protein, respectively.  相似文献   
23.

Purpose

Overexpression of proto-oncogene HER-2 is one of the main molecular markers of breast cancer involved in prognosis and diagnosis and also in trastuzumab therapy. Thus, a request for the evaluation of HER-2 status in breast cancer has been increasing. The aim of our study was assessment of HER-2 overexpression in malignant and benign breast cancer specimens by Real Time RT-PCR technique and comparison of its results with IHC outcomes.

Methods

Twenty benign and sixty malignant breast cancers in addition to fifteen normal breast tissue specimens were analyzed by Real Time RT-PCR method. Fresh tissue samples were disrupted by mortar and pestle. A syringe and a needle were used for complete homogenization of the tissues. The RNA was then isolated from the samples and converted to cDNA. A standard curve was initially plotted using BioEasy SYBR Green I and then all 95 specimens were studied by Real Time RT-PCR using 2− ΔΔCt method.

Results

23.3% of 60 malignant specimens showed HER-2 overexpression, while all of the benign samples represented the normal expression level of HER-2 gene. The concordance rate between the results of Real Time RT-PCR and IHC was 86.6%.

Conclusion

Real Time RT-PCR method is an almost reliable technique and at least can be used as a complementary method for confirming IHC results. This is emanated from relatively high rate of concordance between outcomes of IHC test, as a routine method of detecting the HER-2 gene expression status, and Real Time RT-PCR technique.  相似文献   
24.
25.
This study describes the postnatal development of body mass, forearm length and epiphyseal phalangeal gap in a free ranging population of the Long-fingered Bat, Miniopterus schreibersii pallidus Thomas, 1907, in a maternity roost in the Mahidasht cave in western Iran. The pups at birth had a mean body mass of 3.74?±?0.09 g and forearm length of 24.3?±?0.31mm. The length of forearm and body mass increased linearly during first two weeks, and thereafter maintained an apparent stability. The epiphyseal gap of the fourth metacarpal phalangeal joint increased until the thirteenth day, then decreased linearly until the 70th day and thereafter fused. The rate of body mass gain and forearm growth during the first 13 days was 0.54 g/day and 1.39 mm/day, respectively. Initiation of flight occurred three weeks after birth. A method of estimating age was derived from the values of the forearm length and the total gap of the fourth metacarpal-phalangeal joint during the pre-flight and post-flight periods.  相似文献   
26.
Molecular hydrogen can be generated renewably by water splitting with an “artificial‐leaf device”, which essentially comprises two electrocatalyst electrodes immersed in water and powered by photovoltaics. Ideally, this device should operate efficiently and be fabricated with cost‐efficient means using earth‐abundant materials. Here, a lightweight electrocatalyst electrode, comprising large surface‐area NiCo2O4 nanorods that are firmly anchored onto a carbon–paper current collector via a dense network of nitrogen‐doped carbon nanotubes is presented. This electrocatalyst electrode is bifunctional in that it can efficiently operate as both anode and cathode in the same alkaline solution, as quantified by a delivered current density of 10 mA cm?2 at an overpotential of 400 mV for each of the oxygen and hydrogen evolution reactions. By driving two such identical electrodes with a solution‐processed thin‐film perovskite photovoltaic assembly, a wired artificial‐leaf device is obtained that features a Faradaic H2 evolution efficiency of 100%, and a solar‐to‐hydrogen conversion efficiency of 6.2%. A detailed cost analysis is presented, which implies that the material‐payback time of this device is of the order of 100 days.  相似文献   
27.
Here, an ultrasensitive label-free electrochemical aptasensor was developed for dopamine (DA) detection. Construction of the aptasensor was carried out by electrodeposition of gold–platinum nanoparticles (Au–PtNPs) on glassy carbon (GC) electrode modified with acid-oxidized carbon nanotubes (CNTs–COOH). A designed complementary amine-capped capture probe (ssDNA1) was immobilized at the surface of PtNPs/CNTs–COOH/GC electrode through the covalent amide bonds formed by the carboxyl groups on the nanotubes and the amino groups on the oligonucleotides. DA-specific aptamer was attached onto the electrode surface through hybridization with the ssDNA1. Methylene blue (MB) was used as an electrochemical indicator that was intercalated into the aptamer through the specific interaction with its guanine bases. In the presence of DA, the interaction between aptamer and DA displaced the MB from the electrode surface, rendering a lowered electrochemical signal attributed to a decreased amount of adsorbed MB. This phenomenon can be applied for DA detection. The peak current of probe (MB) linearly decreased over a DA concentration range of 1–30 nM with a detection limit of 0.22 nM.  相似文献   
28.
29.
30.
Several evidences support the idea that a small population of tumour cells representing self‐renewal potential are involved in initiation, maintenance, metastasis, and outcomes of cancer therapy. Elucidation of microRNAs/genes regulatory networks activated in cancer stem cells (CSCs) is necessary for the identification of new targets for cancer therapy. The aim of the present study was to predict the miRNAs pattern, which can target both metastasis and self‐renewal pathways using integration of literature and data mining. For this purpose, mammospheres derived from MCF‐7, MDA‐MB231, and MDA‐MB468 were used as breast CSCs model. They had higher migration, invasion, and colony formation potential, with increasing in stemness‐ and EMT‐related genes expression. Our results determined that miR‐204, ‐200c, ‐34a, and ‐10b contemporarily could target both self‐renewal and EMT pathways. This core regulatory of miRNAs could increase the survival rate of breast invasive carcinoma via up‐regulation of OCT4, SOX2, KLF4, c‐MYC, NOTCH1, SNAI1, ZEB1, and CDH2 and down‐regulation of CDH1. The majority of those target genes were involved in the regulation of pluripotency, MAPK, WNT, Hedgehog, p53, and transforming growth factor β pathways. Hence, this study provides novel insights for targeting core regulatory of miRNAs in breast CSCs to target both self‐renewal and metastasis potential and eradication of breast cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号