首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   11篇
  国内免费   1篇
  243篇
  2023年   2篇
  2022年   7篇
  2021年   8篇
  2020年   17篇
  2019年   32篇
  2018年   12篇
  2017年   10篇
  2016年   11篇
  2015年   12篇
  2014年   19篇
  2013年   16篇
  2012年   24篇
  2011年   19篇
  2010年   9篇
  2009年   4篇
  2008年   4篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  1999年   2篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有243条查询结果,搜索用时 0 毫秒
101.
Stem cells are one of the most important sources to develope a new strategy for repairing bone lesions through tissue engineering. Osteogenic differentiation of stem cells can be affected by various factors such as biological, chemical, physiological, and physical ones. The application of ELF-EMFs has been the subject of many research in bone tissue engineering and evidence suggests that this exogenous physical stimulus can promote osteogenic differentiation in several types of cells. The purpose of this paper is to review the current knowledge on the effects of EMFs on stem cells in bone tissue engineering studies. We recapitulated and analyzed 39 articles that were focused on the application of EMFs for bone tissue engineering purposes. We tabulated scattered information from these articles for easy use and tried to provide an overview of conducted research and identify the knowledge gaps in the field.  相似文献   
102.
103.
The present study investigated the effects of prebiotic fructooligosaccharide (FOS) on the innate immune response, stress resistance, digestive enzyme activities, growth factors and survival of Caspian Roach (Rutilus rutilus) fry. After acclimation, fish (0.67 ± 0.03 g) were allocated into 12 tanks (50 fish per tank) and triplicate groups were fed a control diet or diets containing 1%, 2% or 3% FOS. At the end of the trial (7 weeks), humoral innate immune parameters (serum Ig levels, lysozyme activity and alternative complement activity (ACH50)), resistance to salinity stress (150 g L−1), digestive enzyme activities (amylase, lipase and protease) and growth factors (final weight, weight gain, specific growth rate (SGR), food conversion ratio (FCR), and condition factor) were assessed. At the end of the study the innate immune responses (Ig levels, lysozyme activity and ACH50) were significantly higher in 2% and 3% FOS fed fish (P < 0.05), whereas, 1% dietary FOS only elevated serum lysozyme activity. All dietary FOS levels significantly increased resistance to a salinity stress challenge (P < 0.05) and highest survival was observed in the 3% FOS group. Similarly, digestive enzyme activities were significantly elevated with increasing levels of dietary FOS (P < 0.05). Subsequently, elevated growth performance (final weight, SGR and FCR) was observed in roach fed 2% and 3% FOS compared to the control group (P < 0.05). These results indicate that FOS can be considered as a beneficial dietary supplement for improving the immune response, stress resistance, digestive enzyme activities and growth performance of Caspian roach fry.  相似文献   
104.
The oxidation of sodium diethyldithiocarbamate (DDC) by hydrogen peroxide or superoxide radicals has been investigated. Hydrogen peroxide oxidizes DDC, leading to the formation of a hydrated form of disulfiram, a dimer of DDC having a disulfide group. In equimolar conditions, the overall process appears as a first-order reaction (k = 0.025±0.005 s−1), the first step being a second-order reaction (k = 5.0±0.1mol−1.1. s−1). No radical intermediate was observed in this process. In the presence of an excess of any of the reagents, the hydrated form of disulfiram transforms into different products corresponding to the fixation of oxygen by sulfur atoms or replacement of C = S group by ketone function, in the presence of an excess of hydrogen peroxide. Superoxide anions (produced by steady-state 60Co γ-radiolysis) oxidize DDC, yielding similar products to those obtained with hydrogen peroxide with a maximum oxidation G-value of 0.3 μmol.J−1. The rate constant k(O2·− + DDC) is equal to 900 mol−1. 1. s−1.  相似文献   
105.
Enzymatic Reconstitution of Brain Membrane and Membrane Opiate Receptors   总被引:1,自引:1,他引:0  
A new method using lysophosphatide and acyl-CoA as detergents has been used to solubilize the rat brain opiate receptor. After solubilization, lysophosphatide and acyl-CoA can be almost completely removed by an enzymatic reaction that uses an acyltransferase from rat liver microsomes and reconstitutes the solubilized receptor in membranous vesicles. Morphological studies performed with negative staining and freeze-fracture electron microscopy revealed that the general appearance and intramembrane particle distribution of fracture faces in the reconstituted membrane are similar to those of the native membrane; this indicates that hydrophobic protein components of the original membrane were incorporated during reconstitution. Reconstituted membrane, however, contained higher levels of phosphatidylcholine and lower levels of cholesterol. The activities of the membrane-bound enzymes Na+, K+-ATPase and Ca2+, Mg2+-ATPase in the reconstituted system were 24 and 3%, respectively, those of the native membrane. Although binding of opiate ligands to the reconstituted membrane was stereospecific and saturable, higher concentrations of some of the unlabeled ligands were required to inhibit binding of the radiolabeled ligands. These changes in receptor characteristics are likely due to changes in lipid composition, physical state, and/or distribution of the lipids in the reconstituted membrane bilayer. This conclusion is supported by an increase in the affinity of opiate ligands for reconstituted membrane after adjustment of the latter's lipid composition to match more closely that of the original membrane. This was accomplished by treatment with phospholipid exchange protein to remove the excess phosphatidylcholine and by incorporation of cholesterol into the reconstituted membrane.  相似文献   
106.
VEGF-A is a critical growth factor in tumor growth and progression. Two families of VEGF-A isoforms are produced through alternative splicing including VEGFxxx pro-angiogenic and VEGFxxxb anti-angiogenic isoforms. VEGF111b is a new member of the VEGFxxxb family that is induced by mitomycin C and doesn't express in normal conditions. The potent anti-angiogenic properties of VEGF-111b and its remarkable resistance to proteolysis make it an interesting alternative candidate for therapeutic use in all types of cancers. Here, the recombinant VEGF-111b cDNA with insertion of intronic sequence was constructed by using a class IIs restriction enzyme-based method. The recombinant pBud-VEGF111b was transfected into CHO dhfr and HEK 293 cell lines which are currently the standard hosts for the production of candidate therapeutic proteins. Then, the VEGF-111b expression was evaluated in two cell lines using the Real-time PCR. The production of VEGF-111b protein was also investigated here by dot blotting. The VEGF expression was increased about 109 and 185-folds in transfected CHO-dhfr and HEK 293 cells, respectively, in comparison with the un-transfected cells. Dot blotting approach confirmed that both cell lines have successfully produced the VEGF-111b protein.  相似文献   
107.
The competitive endogenous RNA (ceRNA) hypothesis suggests that a long noncoding RNA (lncRNA) can function as sinks for pools of microRNAs (miRNAs); thereby, in the presence of ceRNA, messenger RNAs (mRNAs) targeted by specific miRNAs can liberate and translate to protein. Maternally expressed gene 3 (MEG3) is a lncRNA, which its expression has been detected in various normal tissues, while it is lost or downregulated in human tumors. The MEG3 is an imprinted gene which, is methylated and suppressed by DNA methyltransferases (DNMTs) family. Also, miRNAs are involved in the regulation of MEG3 gene expression. Interestingly, the lncRNA MEG3 (lnc-MEG3), as a ceRNA affects various cell processes such as proliferation, apoptosis, and angiogenesis by sponging miRNAs. These miRNAs, in turn, regulate different mRNAs in different pathways. This review focuses on the interaction between lnc-MEG3 and experimentally validated miRNAs. In addition, the discussion supplemented by some data obtained from mirPath (v.3) and TarBase (v.8) databanks to provide more details about the pathways affected by this ceRNA.  相似文献   
108.
Somatic embryos and plants were produced from cultured inflorescence and leaf segments of Triticum aestivum X Leymus anaustus F1 hybrids and the parental lines. Inflorescences showed a better capacity for somatic embryogenesis and plant regeneration than leaves. Leymus anaustus produced the highest number of embryogenic calli, while the hybrids were intermediate between this species and Triticum aestivum. Presence of 2,4-D was shown to be essential for induction and maintenance of somatic embryogenesis. Addition of five amino acids (glutamine, proline, asparagine, aspartic acid and glutamic acid) did not have any marked effect when they were used in the callus induction medium. The regenerated plants had the same morphology as the original plants. No cytological modification was observed in the examined plants.  相似文献   
109.
Cell migration in wound healing and disease is critically dependent on integration with the extracellular matrix, but the receptors that couple matrix topography to migratory behavior remain obscure. Using nano-engineered fibronectin surfaces and cell-derived matrices, we identify syndecan-4 as a key signaling receptor determining directional migration. In wild-type fibroblasts, syndecan-4 mediates the matrix-induced protein kinase Calpha (PKCalpha)-dependent activation of Rac1 and localizes Rac1 activity and membrane protrusion to the leading edge of the cell, resulting in persistent migration. In contrast, syndecan-4-null fibroblasts migrate randomly as a result of high delocalized Rac1 activity, whereas cells expressing a syndecan-4 cytodomain mutant deficient in PKCalpha regulation fail to localize active Rac1 to points of matrix engagement and consequently fail to recognize and respond to topographical changes in the matrix.  相似文献   
110.

Background

Choline kinase has three isoforms encoded by the genes Chka and Chkb. Inactivation of Chka in mice results in embryonic lethality, whereas Chkb−/− mice display neonatal forelimb bone deformations.

Methods

To understand the mechanisms underlying the bone deformations, we compared the biology and biochemistry of bone formation from embryonic to young adult wild-type (WT) and Chkb−/− mice.

Results

The deformations are specific to the radius and ulna during the late embryonic stage. The radius and ulna of Chkb−/− mice display expanded hypertrophic zones, unorganized proliferative columns in their growth plates, and delayed formation of primary ossification centers. The differentiation of chondrocytes of Chkb−/− mice was impaired, as was chondrocyte proliferation and expression of matrix metalloproteinases 9 and 13. In chondrocytes from Chkb−/− mice, phosphatidylcholine was slightly lower than in WT mice whereas the amount of phosphocholine was decreased by approximately 75%. In addition, the radius and ulna from Chkb−/− mice contained fewer osteoclasts along the cartilage/bone interface.

Conclusions

Chkb has a critical role in the normal embryogenic formation of the radius and ulna in mice.

General Significance

Our data indicate that choline kinase beta plays an important role in endochondral bone formation by modulating growth plate physiology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号